

Warming School ERASMUS-EDU-2023-CB-VET- 101129318

Environmental Sustainability Manual

Guidelines for implementing the Environmental Sustainability course

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Project Number: ERASMUS-EDU-2023-CB-VETPROJECT-101129318

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

With the collaboration of the projects' partners:

PREFACE

Designed specifically for VET centers, this Manual offer а structured approach to help educators introduce students to green practices, sustainability standards. and environmental certifications. The text was conceived as both a practical tool and a collective vision: a resource designed quide Vocational to Education and Training (VET) toward a central role in the transition to a more sustainable future.

It responds to the urgent need for education that not only imparts knowledge but also equips learners with the skills, values, and attitudes required to navigate and shape the realities of a green economy. Developed through close collaboration among schools, teachers, experts, and partner organizations across Europe and Africa, the manual brings together diverse perspectives and experiences. It consolidates the lessons learned from training mobilities, experimental pilot courses, and feedback collected directly from classrooms. In this way, it reflects a participatory process in which theory and practice have been tested side by side, ensuring that the final product is both pedagogically rigorous and adaptable to different contexts.

The courses and activities proposed here have been designed to help educators introduce sustainability into vocational training in meaningful and accessible ways. Learners are invited to engage with green practices, sustainability standards, and environmental policies, while also developing competences in systems thinking, critical reflection, and responsible action. By linking global priorities—such as the Sustainable Development Goals, the European Green Deal, and national climate strategies—with local realities, the manual encourages students to recognize themselves as active agents of change within their own communities and professional sectors.

At the same time, the manual supports educators by offering clear contents, structures, methodologies, and examples that can be adapted to a wide range of institutional needs. It combines theoretical foundations with practice-oriented approaches, including project-based learning, simulations, debates, and real-world applications. This blend of methods ensures that sustainability is not taught as an isolated subject but becomes a cross-cutting priority integrated into the broader learning experience.

By embedding sustainability into VET, this manual aims to contribute to a transformation that goes beyond the classroom. It seeks to inspire a culture of innovation, responsibility, and resilience among young people, while also strengthening the institutions and communities to which they belong. In doing so, it offers both a model and an invitation: a model that can be replicated and adapted in different contexts, and an invitation to all educators, students, and partners to take part in building a more sustainable and equitable future.

Table of Contents

1. INTRODUCTION	8	3.4 Differences Between Linear and	31
		Circular Economies	31
1.1 Background and Rationale	8	3.5 Benefits of the Circular	34
1.2 Objectives of the Manual	10	Economy	0-1
1.3 Scope and Target Audience	12	3.6 Understanding the Circular	36
1.4 Methodology Used in Manual	14	Economy	50
Development		3.6.1 The Case for Change:	37
1.5 The Role of Environmental	15	Statistics and Trends	37
Education in VET			38
1.6 Structure of the Manual	16	3.7 Principles of the Circular	30
2. SUSTAINABILITY	19	Economy	
2. SUSTAINABILITY	19	4. POLLUTION AND	40
2.1 Understanding Sustainable	19	ENVIRONMENTAL	
Education		ENVIRONMENTAL	
2.2 Defining Sustainability and Its	20	PROTECTION	
Sectoral Importance		4.1 Introduction to Pollution	40
2.3 Historical Context And	21	4.2 Historical Background	41
Evolution Of Sustainability		4.3 Main Types of Pollution	41
Concepts	24	4.4 Causes of Pollution	42
2.4 Principles Of Sustainability:		4.5 Impacts of Pollution	43
Environmental, Social, Economic		4.6 Global and Local Dimensions of	44
and Educational Dimensions		Pollution	
		4.7 Pedagogical Relevance	44
3. CIRCULAR ECONOMY	27	r daagegraat notevanee	
3.1 Circular Economy	27	5. AIR AND GREENHOUSE	47
3.2 Embracing the Circular	28	GASES	
Economy in Educational Practice			
3.3 Definition and Key Concepts	29	5.1 The Importance of Air for Life	47

Table of Contents

5.2 Air and Human Societies	49	7. INTRODUCTION TO SOIL	74
5.3 Air as a Common Good	49	7.1 Features and Importance of Soil	75
5.4 Air and Human Societies	50	7.2 Key Soil Processes and	7!
5.5 Air Pollution	50	Agricultural Practices	,
5.6 Greenhouse Gases	51	7.3 Soil Pollution	78
5.7 The Greenhouse Effect	<i>52</i>	7.4 Strategies for Prevention and	79
5.8 The Five Main Greenhouse	<i>52</i>	Remediation	, ,
Gases		7.5 Suggested Classroom Activities	80
5.9 The fight to Greenhouse Gas	<i>55</i>		
Emissions		8 WASTE MANAGEMENT	90
5.10 Suggested Classroom	<i>57</i>	8.1 Key Challenges of Waste	9
Activities		Management	
		8.2 The 5 R's Principle	9:
6. WATER	61	8.3 Recycling, the pillar of global	94
6.1 Water as a Human Right	61	sustainability strategies	
6.2 Our Relationship with Water	62	8.4 The Importance of Recycling	9!
6.3 Water and Society	63	8.5 Waste Classification and	90
6.4 Water on Our Planet	64	Treatment Technologies	
6.5 The Water Cycle	64	8.6 Incentivization and Behavioral	97
6.6 Types of Water	65	Change	
6.7 Water Pollution	65	8.7 Global Initiatives and Policy	98
	67	Frameworks	
6.8 Consequences of Water Pollution	07	8.8 Suggested Classroom Activities	99
	00		
6.9 Suggested Classroom Activities	68		

Table of Contents

9. UNDERSTANDING THE	107	11.4 Development of the Climate	132
SUSTAINABLE		Crisis	
DEVELOPMENT GOALS		11.5 Future and Current Consequences	132
(SDGS)		11.6 Future Scenarios	133
9.1 Origins and Significance 9.2 The 17 Goals 9.3 Interconnectedness and	108 108 110	11.7 Action and Adaptation11.8 Suggested Classroom Activities12. EUROPEAN GREEN DEAL	133 134 13
Integration, Global Targets and Indicators		12.1 Goals and Achievements 12.2 Future Perspectives	13 13
9.4 Challenges and Opportunities 9.5 Integrating the SDGs in	111 112	12.2 Future Perspectives 12.3 The European Green Deal and Society	13
Education 9.6 Suggested Classroom Activities	113	12.4 Education and Skills for the Green Transition 12.5 The Social and Justice	13
10. BIODIVERSITY 10.1 The Importance of Biodiversity 10.2 Threats to Biodiversity 10.3 Pollution and Its Impact on	116 117 117 118	Dimension 12.6 The Green Deal and Europe's Role in the World 12.7 Suggested Classroom Activities	13:
Biodiversity 10.4 Key Concepts	119	RESOURCES	148
10.5 Suggested Classroom Activities	120	 Circular Economy Pollution	148 149
11. CLIMATE CHANGE	129	Waste Management	151
11.1 The climate movement 11.2 Climate Change in History	130 130	 Efficiency and sustainability Policies	153 154
11.3 Causes of Modern Climate Change	131	OTHER RECOMMENDED	15
		RESOURCES	

Introduction

1.1 Background and Rationale

The urgent need to transition toward environmentally sustainable systems is no longer a distant goal but an immediate global priority. Climate change, environmental degradation, biodiversity loss, and the overexploitation of natural resources are intensifying social, economic, and ecological pressures across the world. These interconnected challenges demand coordinated responses that span communities, industries, and educational systems.

Education—and in particular Vocational Education and Training (VET)—is uniquely positioned to address these challenges. VET equips learners not only with technical skills but also with the values, attitudes, and problem-solving capabilities necessary to drive the shift toward sustainable development. Embedding sustainability into VET curricula ensures that future professionals are prepared to impl-

-ement environmentally responsible practices in their respective sectors, from energy and construction to agriculture, manufacturing, and services.

This course manual has been developed as part of a broader strategy to integrate **environmental sustainability principles into VET systems**. It is the result of extensive collaboration, drawing on:

- Lessons learned from pilot projects tested across diverse contexts;
- Insights from teacher training mobilities that strengthened the capacity of educators to embed sustainability in their teaching practices;
- Feedback from multi-country implementation efforts that highlighted both challenges and opportunities for scaling green education initiatives.

The manual is designed to **operationalize sustainability education** in practical and adaptable ways. It emphasizes locally relevant approaches while remaining firmly aligned with **global and regional frameworks**, including:

- The United Nations Sustainable Development Goals (SDGs), particularly Goal 4 (Quality Education), Goal 7 (Affordable and Clean Energy), Goal 12 (Responsible Consumption and Production), and Goal 13 (Climate Action);
- The European Green Deal, which sets out the roadmap for a climate-neutral Europe by 2050;
- National climate strategies and policy frameworks that commit countries to reducing greenhouse gas emissions and fostering sustainable growth.

By embedding sustainability across VET curricula, this manual seeks to empower learners, educators, and institutions to become active agents of change. It aims to foster a generation of skilled professionals capable of navigating the complexities of the green transition, promoting circular economy practices, and contributing to resilient and low-carbon societies.

Ultimately, this manual is both a pedagogical tool and a call to action—an invitation for VET stakeholders to reimagine education as a catalyst for sustainability and a cornerstone of the collective response to the climate crisis.

1.2 Objectives of the Manual

The purpose of this manual is to serve as a comprehensive guide for educators and institutions committed to integrating environmental sustainability into Vocational Education and Training. It has been conceived not only as a teaching resource but also as a strategic tool to help VET adapt to the urgent environmental and social challenges of our time. At its core, the manual seeks to accompany teachers, trainers, and learners on a journey that connects global sustainability goals with local realities, and that transforms abstract concepts into concrete skills, values, and practices.

The overarching objective of the project is the creation of a model for sustainability education that is both rigorous and adaptable. been developed through direct the manual has experimentation and pilot activities tailored to the needs of the partner institutions, it has been designed with transferability in mind. This means that the framework presented here can be exported to other contexts, adapted to different territories, and aligned with diverse institutional priorities. In this way, the manual contributes not only to the immediate benefit of the educators and learners directly

involved, but also to a wider network of associations, public bodies, and local communities that can draw inspiration from its approach.

The objectives of the manual are therefore multiple and interconnected. It provides a structured framework for delivering sustainability education within VET, one that is coherent, modular, and adaptable. It supports teachers with methodologies, tools, and content tailored specifically to vocational learners, recognizing the importance of hands-on, practice-oriented training. It promotes interdisciplinary approaches that place environmental themes in dialogue with economic and social dimensions, encouraging learners to see sustainability as a holistic and systemic issue rather than a narrow technical subject.

At the same time, the manual seeks to foster key competences in learners, such as critical and systems thinking, creativity, and responsible action. These are not abstract ideals but practical capacities that will enable learners to navigate the challenges of their professional lives and to contribute positively to their communities and workplaces. To achieve this, the manual integrates formal, non-formal, and experiential learning strategies, ensuring that knowledge is not only transmitted but also constructed, tested, and applied in real contexts.

Ultimately, the objectives of this manual go beyond the transmission of information. They aim to inspire transformation—of learners, of educators, of institutions, and of the territories in which they are embedded. By equipping VET with a model of sustainability education that is both visionary and practical, the manual contributes to the creation of a culture of responsibility, innovation, and resilience that will be essential for building a sustainable future.

1.3 Scope and Target Audience

The scope of this manual extends well beyond a single classroom or a fixed institutional setting. While it has been designed first and foremost to serve Vocational Education and Training (VET) teachers, trainers, and their learners both in Europe and in Africa, its relevance reaches into a much broader educational and societal landscape. It offers guidance and resources for school administrators and curriculum developers who are looking to embed sustainability into their programs, and it provides inspiration for policymakers and education coordinators who aim to align national strategies with global priorities such as the Sustainable Development Goals and the European Green Deal.

The manual also speaks to the wider ecosystem that surrounds education. Non-governmental organizations, associations, and civil society actors engaged in skills development and sustainability advocacy can use its materials to strengthen their initiatives, adapt its approaches to non-formal settings, and build bridges between schools, communities, and local institutions. This broader scope reflects the recognition that environmental sustainability is not only a technical or academic subject, but a shared societal challenge that requires collaboration across different sectors and actors.

Although the primary focus is on secondary-level VET, the materials have been designed with adaptability in mind. They can be applied in higher education institutions seeking to enrich their curricula, in community-based training programs aimed at adults or marginalized groups, and in informal learning contexts where flexibility and accessibility are essential. The course structure is open in both duration and delivery format, allowing teachers and facilitators to tailor it to their specific circumstances. Its content can be integrated

into a full academic module, condensed into a short workshop series, or spread across extracurricular projects.

Equally important is the manual's versatility in terms of context. The examples, case studies, and suggested activities have been selected to resonate with both urban and rural realities. They address global challenges while remaining grounded in local applications, ensuring that learners can see the direct relevance of sustainability to their own environment. Where possible, the manual draws on the experiences of partner countries in Europe and Africa. demonstrating how content can be contextualized to reflect diverse social, and economic situations. This international cultural. dimension also underlines the interconnected nature of climate change and sustainability, encouraging learners to view themselves as part of a global community engaged in a shared transition.

For this reason, the manual is explicitly intended for both European and African schools, recognizing the different challenges and opportunities that each context may face. Its activities and resources have been designed to be adaptable, allowing teachers to adjust the content to the specific needs of their students, institutions, and communities. In doing so, it ensures that environmental education becomes both globally coherent and locally meaningful.

The target audience of this manual includes educators and students, but also extends to schools, educational centers, civic society organizations, and local communities. It is intended as a flexible and inclusive resource that supports all those who recognize the urgency of environmental education and who are committed to equipping present and future generations with the skills and values needed to lead the way toward sustainability.

1.4 Methodology Used in Manual Development

The development of this manual followed a multi-phase and participatory process that engaged schools, teachers, experts, and partner organizations across Europe and Africa. Each stage was carefully designed to ensure that the final product would be both academically rigorous and practically relevant for Vocational Education and Training.

The first phase involved a transnational teacher training mobility, a training of trainers where educators from partner institutions came together to explore key concepts in environmental sustainability, innovative teaching methodologies, and the integration of crosscutting themes such as climate change, circular economy, and biodiversity protection. This mobility not only introduced the pedagogical foundation of the manual but also fostered a shared vision among participants for embedding sustainability into VET.

Following this, the project entered a pilot phase. Several VET institutions implemented experimental courses based on draft versions of the manual. Teachers worked directly with students, applying activities and lesson plans, while structured feedback loops captured the strengths, challenges, and opportunities for improvement. In total, 3 schools in Slovenia, Tanzania and Somalia and more than 10 teachers were involved in this stage. Their contributions were instrumental in refining the content and ensuring that it could be adapted to both European and African contexts.

Parallel to the pilot testing, experts in environmental education, curriculum design, and vocational training were engaged to provide peer review and external validation through job shadowing experience in the schools and several local researchs and activities.

Their expertise helped to align the manual with international standards and with good practices in sustainability education.

Throughout the process, the project also emphasized collaborative analysis of good practices. Partner institutions shared tools, teaching strategies, and local examples of sustainability initiatives, ensuring that the manual was not only theoretically robust but also rooted in practical realities. This exchange enriched the manual with case studies and applications from both Europe and Africa, highlighting the adaptability of the approach.

Fach module and section of the manual is therefore the result of this iterative, collective process. The content integrates theoretical foundations with practical applications, designed to support teachers in delivering engaging, relevant, and action-oriented learning experiences. By drawing on the contributions of schools, teachers, experts, and partners, the methodology ensured that the manual reflects a wide range of perspectives and can serve as a flexible, transferable model for sustainability education in VET.

1.5 The Role of Environmental Education in VET

Environmental education within Vocational Education and Training (VET) is much more than an additional subject; it is a strategic driver of the transition toward a more sustainable future. By placing environmental awareness and sustainability at the heart of vocational learning, VET equips learners not only with the knowledge to understand today's global challenges but also with the practical skills and attitudes necessary to act responsibly in their chosen professions.

VET institutions occupy a unique position in this transformation.

They prepare the workforce that will shape tomorrow's industries. from agriculture, construction, and manufacturing to tourism, health, and hospitality. Embedding sustainability in VET therefore means embedding it directly into the systems that most affect the environment. At both operational and strategic levels, vocational education can promote practices that reduce waste, save energy, protect biodiversity, and support circular models of production and consumption.

To incorporate sustainability into VET is to empower learners to see themselves as active agents of change, not passive recipients of knowledge. In their future workplaces, they will be able to recognize environmental impacts, identify sustainable alternatives, introduce innovative solutions. This manual has been designed to ensure that sustainability is not treated as a separate or secondary theme, but rather as a cross-cutting priority woven into the very fabric of teaching and learning. In this way, environmental education becomes a guiding principle that enriches vocational training, aligning it with the wider societal shift toward resilience, equity, and ecological responsibility.

1.6 Structure of the Manual

This manual is organized into clear sections that guide both teachers and learners through the understanding and application of sustainability and climate change concepts within Vocational Education and Training (VET). Each section builds progressively, moving from theory to practice, and from global frameworks to local action.

The manual is structured as a progressive journey that begins with an introduction setting out the background, rationale, and purpose of the work. This opening section explains the urgent need for sustainability in education and highlights the central role that

Vocational Education and Training (VET) can play in preparing learners for the challenges of the green transition.

Following the introduction, the manual turns to the fundamental concepts of sustainability, circular economy, environmental protection, and the different forms of pollution. These themes are presented not only as abstract ideas but also as pressing realities that shape our world. This section also looks ahead to possible future scenarios, inviting learners to consider the consequences of human actions and to reflect on how societies can and must respond. To encourage deeper engagement, it integrates questions and activities that stimulate critical thinking.

The manual then moves from concepts to policy frameworks, addressing the global and European strategies designed to tackle climate change and biodiversity loss. Here, students are introduced to powerful tools such as the United Nations Sustainable Development Goals, the European Green Deal, and other EU strategies. These policies are not treated as distant political documents but as living frameworks that connect directly to learners' lives and professional futures. The guide offers opportunities for students to simulate decision-making processes and to design local green projects, thereby applying the holistic and forward-looking vision that underpins the manual.

Within its various chapters, the manual also identifies the key skills, competences, and mindsets required for the green transition. It links these competences to professional profiles across a range of sectors and provides practical exercises that allow learners to develop and test these skills.

In terms of pedagogy, the manual gives special attention to teaching and learning approaches. It offers guidance to teachers on how to integrate sustainability into their practice, presenting examples of learner-centered methods such as project-based learning, debates, role plays, and simulations. It also encourages cross-curricular approaches that weave sustainability themes across different subjects, making them relevant in multiple educational contexts.

Practical activities and non-formal methods form the foundation of the learning approach proposed here. Theory is consistently connected with practice, and global knowledge is grounded in local applications. Learners are given opportunities to apply their theoretical understanding in real-world contexts, such as local sustainability projects, carbon budget simulations, and structured debates. Reflection and self-assessment are integrated throughout, ensuring that learning is not only informative but also transformative.

To further support both teachers and students, the manual provides references to key documents, reports, and online resources, including IPCC assessments, EU climate policies, and the United Nations Sustainable Development Goals. It offers links to teaching materials, case studies, and examples of good practice from across Europe.

Finally, the manual has been designed with flexibility in mind. It can be used as a linear progression from theory to practice, or modularly, with individual sections adapted according to institutional needs, available teaching time, and learner levels. It is available in both print and digital formats to ensure accessibility and usability in diverse educational settings.

2. Sustainability

Sustainability is not just an environmental concept; it is a comprehensive framework for thinking about how societies can progress while respecting the limits of the natural world. It recognizes that the environment, the economy, and society are interconnected, and that long-term stability requires balancing these three pillars.

In education, sustainability functions as both a theme and a method. It is a theme because it addresses global challenges like climate change, biodiversity loss, and inequality. It is a method because it shapes how learning happens — through collaboration, critical inquiry, and engagement with real-world issues.

2.1 Understanding Sustainable Education

Sustainable education is an approach that goes beyond transmitting facts; it aims to transform the way people think and act. It emphasizes:

- Critical consciousness: learners are encouraged to question existing patterns of consumption, production, and governance.
- · Interdisciplinarity: knowledge from sciences, humanities, and social studies is combined to address complex global challenges.
- Ethical awareness: responsibility toward present and future generations becomes a central value.
- Action orientation: education is not only about understanding problems, but also about developing the skills and motivation to solve them.

Thus, sustainable education is not limited to formal curricula; it involves community practices, lifelong learning, and participation.

2.2 Defining Sustainability and Its Sectoral **Importance**

The widely accepted definition from the Brundtland Report (1987) describes sustainability as:

"Meeting the needs of the present without compromising the ability of future generations to meet their own needs."

This definition underscores two crucial aspects: intergenerational justice (responsibility to future generations) and intragenerational justice (equity within the current generation).

Sustainability can be broken down into sectoral dimensions:

- Environmental sustainability: maintaining the integrity of ecosystems and natural resources.
- Economic sustainability: fostering growth and innovation while ensuring that development is efficient, resilient, and fair.
- Social sustainability: promoting equity, cultural diversity, social cohesion, and human rights.
- Educational sustainability: ensuring that learning systems equip individuals with the capacity to adapt, innovate, and make responsible choices.

By linking these sectors, sustainability reveals itself as a holistic concept: the health of one sector depends on the balance of the others.

2.3 Historical Context and Evolution of **Sustainability Concepts**

The concept of sustainability has undergone a profound evolution. Environmental education has developed progressively since the 1960s through international conferences, treaties, and global strategies. Below is an overview of its main milestones.

- Early roots: Traditional societies often practiced resource stewardship, but without framing it as "sustainability." Practices were limited to survival and immediate needs.
- 1960s Industrial revolution: Rapid industrialization highlighted the dangers of unchecked growth, including pollution, resource depletion, and social inequalities.
- 1970s The rise of environmental consciousness: The Stockholm Conference (1972) placed the environment at the center of global debate. Sustainability began to emerge as a policy concept rather than a local concern.

The United Nations Conference on the Human Environment (Stockholm, 1972) highlighted the importance of environmental education for both younger generations and adults, with special consideration for disadvantaged groups Its purpose was to promote enlightened opinions and responsible behavior from individuals, enterprises, and communities in protecting and improving the environment. It also stressed the role of mass media, which should avoid contributing to environmental deterioration and instead disseminate educational information on the need to protect and improve the environment.

The Belgrade Charter (1975) provided a framework for environmental education. It defined its goal as: "To develop a world population that is aware of and concerned about the environment and its associated problems, and which has the knowledge, skills, attitudes, motivation and commitment to work individually and collectively towards solutions to current problems and the prevention of new ones."

The the Intergovernmental Conference on Environmental Education (1977) has been organized by UNESCO and UNEP, (Tbilisi Conference) clarified the theoretical foundations of environmental education. It emphasized an understanding of the environment as a whole, encompassing both natural aspects and those derived from human activity.

 1980s - The integration of environment and development, Linking Education and Sustainable Development: In 1983, the World Commission on Environment and Development (WCED) was established. Its 1987 report Our Common Future (also known as the Brundtland Report) stressed the need for education in key areas such as forestry, agriculture, conservation, and local population training.

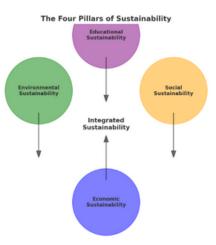
The report introduced the concept of sustainable development—a balance between economic growth, social development, and environmental protection.

Ten years after Tbilisi, UNESCO and UNEP organized the International Congress in Moscow (1987)which adopted the International Strategy for Action in Environmental Education and Training for the 1990s.

This strategy guided international efforts in environmental education for the following decade.

- 1990s Institutionalization: The Rio Earth Summit (1992) and Agenda 21 embedded sustainability into international frameworks, emphasizing public participation, education, and global cooperation. The Rio Summit adopted the Rio Declaration on Environment and Development, whose 27 principles laid the foundation for environmental education. Particularly important is Principle 10, which emphasizes public access to environmental information, participation in decision-making, and awareness-raising. 6 The Agenda 21 action plan further expanded these ideas. Chapter 36, Promoting Education, Public Awareness and Training, directly followed the Tbilisi recommendations and set specific programs for implementation.
- 21st century The global agenda: UNESCO launched the United Nations Decade of Education for Sustainable Development to mobilize educational resources worldwide. Its strategy encouraged approaches that promoted critical thinking, ethical reasoning, empathy, and transformative action for sustainability.

At Rio+20, the Treaty on Environmental Education for Sustainable Societies and Global Responsibility was ratified. It described environmental education as a lifelong process based on respect for all life and committed to ecological preservation and social transformation.


The 2030 Agenda and its Sustainable Development Goals (SDGs) gave environmental education a renewed central role. With the Sustainable Development Goals (2015), sustainability became a universal blueprint for progress, expanding to cover poverty reduction, gender equality, peace, and strong institutions. This evolution shows that sustainability is dynamic: it shifts in meaning as societies face new challenges, yet remains anchored in the principle of balancing human aspirations with planetary limits.

The COVID-19 pandemic triggered the worst education crisis in history, disrupting learning worldwide. In response, the UN Secretary-General's Education Transformation Summit (2022) placed education back at the top of the global political agenda. Among its initiatives, the Greening Education Partnership seeks to ensure that all learners acquire the knowledge, skills, and values needed to address climate change and build sustainable futures. 17

2.4 Principles of Sustainability: Environmental, Social, Economic, and Educational Dimensions

Sustainability is a holistic framework that balances the needs of people, the planet, and prosperity, while ensuring that future generations inherit the better—opportunities. same—or Traditionally, three main dimensions have been highlighted: environmental, social, and economic. scholars recent vears. and educators have emphasized a fourth principle: educational sustainability, recognizing education as both a driver condition for long-term sustainability.

1. Environmental Sustainability

- Key Principles:
- Resource Conservation: Managing renewable resources (forests, fisheries, water) within their
- Biodiversity Protection: Preserving species and ecosystems to maintain balance and resilience.
- **Pollution Control:** Preventing environmental health.
- Climate Responsibility: Mitigation (reducina emissions) and adaptation (coping with impacts).

Deeper Conceptual Note

Environmental sustainability stresses the idea of planetary that humanity must respect to avoid irreversible damage.

Definition

The capacity of natural remain systems to diverse. productive. and resilient over time. supporting life on Earth without degradation.

2. Social Sustainability >>

- Equity and Inclusion: Fair distribution opportunities, resources, and access, especially for marginalized groups.
- **Cultural Diversity:** Preserving cultural heritage and valuing pluralism.
- Health and Well-being: Universal access to education, healthcare, and safety.
- Democratic Participation: Ensuring individuals and communities can influence decisions that affect their lives.

Deeper Conceptual Note

Social sustainability highlights the ethical dimension of sustainability, stressing solidarity between present and future

Definition

The ability of societies to function in ways that ensure equity, justice, participation, development human across generations.

3. Economic Sustainability

- Ney Principles:
- Responsible Growth: Long-term economic strategies that avoid overexploitation.
- Innovation for Sustainability: Encouraging green technologies, circular economies, and renewable e
- True Cost Accounting: Incorporating environmental and social externalities into market prices.
- Intergenerational Prosperity: Creating economic value without jeopardizing the needs of future generations.

Economic sustainability redefines "growth" not as perpetual expansion, but as qualitative improvement in living standards that respects ecological and social constraints.

Definition

Building resilient economic systems that provide prosperity and livelihoods while preserving environmental and social resources.

4. Educational Sustainability *

- Key Principles:
- Long-Term Learning: Education must adapt to future challenges, not just immediate needs.
- Equity in Education: Universal access to quality education is essential for sustainability.
- Critical and Transformative Pedagogy: Moving beyond rote learning toward problem-solving, creativity, and civic responsibility.
- Lifelong Learning: Sustainability requires education that goes beyond schools—into communities, workplaces, and informal settings.
- Integration of Sustainability Concepts: Embedding environmental, social, and economic awareness into curricula at all levels.
 - Deeper Conceptual Note

Educational sustainability functions as the **enabling principle** of all other dimensions, since informed citizens and leaders are needed to implement sustainable practices.

Definition

The of process ensuring that educational systems practices and are capable of transmitting knowledge. values. skills, and critical thinking across generations in ways that foster sustainability. equity, justice, ure participation, and human development across generations.

3. Circular Economy

3.1 Circular Economy

This chapter explores the core principles of sustainable education, with a particular focus on the Circular Economy, the Sustainable Development Goals (SDGs), and the European Green Deal. A solid understanding of these frameworks is essential for educators who aim to integrate sustainability into their teaching practices and cultivate a strong sense of environmental responsibility among students.

This first focus on Circular Economy serves as a comprehensive guide for educators who wish to integrate the principles of the Circular Economy into their teaching practice. It explores the conceptual foundations of circularity and demonstrates how these can be translated into meaningful educational activities. By embedding these ideas into curricula, educators not only provide

students with knowledge about sustainability but also cultivate habits of critical thinking, creativity, and responsibility that extend far beyond the classroom. The aim is to design learning experiences that are both intellectually engaging and transformative, equipping students with the mindset and skills required to thrive in a rapidly changing world.

3.2 Embracing the Circular Economy in **Educational Practice**

The circular economy is an economic model designed to move beyond the traditional "take-make-dispose" linear system of production and consumption. Instead of focusing on continuous manufacturing and disposal, it emphasizes reduction, reuse, and recycling as the guiding principles for managing resources.

The Circular Economy represents a transformative shift in the way we manage resources, placing emphasis on durability, reuse, and waste reduction. We will examine how governments, organisations, and communities can adopt circular models to foster sustainability and strengthen economic resilience.

While the linear economy promotes short-term consumption and generates large amounts of waste, the circular model mirrors the cycles found in nature—where nothing is wasted, and every element is reused in different forms.

The concept of the Circular Economy offers a departure from the prevailing linear model of take-make-consume-dispose. In contrast to a system that depends on abundant raw materials and fosters excessive waste, the Circular Economy advocates for a restorative and regenerative model of production and consumption. It is built upon the practices of sharing, leasing, repairing, refurbishing, recycling, and extending the life cycles of products and materials. By

keeping resources in circulation for as long as possible, it minimises waste while generating new forms of social and economic value.

Within an educational context, these principles invite students to envision alternatives to the "throwaway culture" that dominates modern consumption. For example, a classroom project might challenge students to design products that are durable, modular, and repairable, or to analyse the environmental consequences of planned obsolescence—the deliberate shortening of product lifespans to encourage repeated purchases. Such exercises encourage students to think critically about consumption patterns and empower them to imagine more responsible and sustainable alternatives.

Equally central to the Circular Economy is the idea of regeneration: the capacity not merely to reuse or recycle but to restore and replenish natural systems. This orientation shifts the focus away from damage limitation toward active environmental stewardship. Recycling and upcycling, meanwhile, highlight the creative potential of circular thinking. Recycling ensures that valuable materials are reintroduced into production systems, while upcycling transforms waste into items of greater value, offering powerful lessons in innovation and resource efficiency. At its foundation, the Circular Economy fosters a more balanced and respectful relationship between human activity and the natural environment.

3.3 Definition and Key Concepts

The Circular Economy is an alternative economic model that moves beyond the conventional linear approach of take, make, and dispose. Instead of viewing resources as consumable disposable, the Circular Economy is grounded in the idea of keeping materials, products, and resources circulating in the economy for as

long as possible, thereby minimising waste and reducing environmental pressures. This model seeks not only to mitigate the negative impacts of traditional production and consumption but also to create systems that are restorative and regenerative by design.

At its core, the Circular Economy is guided by several key concepts:

Resource Efficiency: The principle of using natural and manufactured resources in the most effective manner, ensuring that their full value is realised across the entire life cycle of a product or service. Efficiency here is not limited to material use, but also includes energy, water, and human capital.

Design for Circularity: Products and services are intentionally designed to extend their lifespan, enable easy repair, refurbishment, or remanufacturing, and ensure that materials can be recovered and reused at the end of their service life. This approach challenges traditional product design by placing durability, adaptability, and recyclability at its centre.

Closed-Loop Systems: Unlike linear systems that generate waste as an endpoint, circular systems reintegrate outputs back into the production cycle. Waste streams are transformed into resources, enabling industries and communities to reduce dependence on virgin raw materials while lowering emissions and environmental degradation.

Systems Thinking: The Circular Economy recognises the interconnectedness of economic, social, and environmental systems. It requires a holistic perspective that considers the effects of decisions across supply ripple chains. communities, and ecosystems, promoting solutions that are sustainable in the long term.

Value Creation Beyond Growth: Rather than measuring success solely through economic output or short-term profitability, the Circular Economy emphasises resilience, sustainability, and well-being. It redefines value to include environmental health, social equity, and intergenerational responsibility.

The Circular Economy represents a profound cultural and economic transformation. It encourages businesses, policymakers, and citizens to rethink how products are designed, consumed, and valued. By decoupling economic growth from the consumption of finite resources, it provides a strategic pathway toward sustainable prosperity, one that is closely aligned with global frameworks such as the United Nations' Sustainable Development Goals (SDGs) and the European Green Deal.

3.4 Differences Between Linear and Circular **Economies**

The distinction between linear and circular economies lies not only in their operational models but also in their underlying philosophies regarding the use of resources, the creation of value, and humanity's relationship with the environment.

The Linear Economy

The traditional linear economy is often described through the model of take-make-consume-dispose. It is characterised by the extraction of raw materials, the manufacture of goods, their consumption, and their eventual disposal, typically as waste. This system relies heavily on the continuous availability of cheap resources and energy, which historically enabled rapid industrialisation and economic growth. However, the linear model has two inherent limitations: it assumes that natural resources are abundant and infinitely available, and it fails to account for the ecological consequences of waste generation and environmental degradation.

Planned obsolescence is often embedded within the linear system, where products are deliberately designed with limited lifespans in order to drive repeated consumption. While this may support short-term economic gains, it accelerates resource depletion and exacerbates environmental pressures, leading to unsustainable patterns of production and consumption.

The Circular Economy

In contrast, the circular economy offers a regenerative and restorative framework. Rather than treating waste as an inevitable by-product, it aims to design waste out of the system altogether.

Products and processes are conceived with longevity, adaptability, and resource efficiency in mind. Materials are retained in productive use for as long as possible through practices such as reuse, repair, remanufacturing, recycling, and upcycling. Once a product reaches the end of its life, its materials are reintegrated into the economy, creating continuous cycles of value rather than linear pathways of depletion.

Circular systems also prioritise innovation and systemic thinking. They emphasise collaboration across industries and sectors, ensuring that waste streams from one process can become inputs for another. Importantly, the circular economy is not solely an environmental strategy but a holistic model that integrates ecological sustainability with economic resilience and social wellbeing.

The fundamental difference between linear and circular economies lies in their orientation toward the future. The linear model is inherently extractive and short-term, prioritising immediate gains over long-term sustainability. The circular model, by contrast, is restorative and future-oriented, aligning economic development with ecological stewardship and social responsibility. For educators, highlighting these distinctions provides an opportunity to cultivate critical reflection in students, enabling them to question dominant economic paradigms and imagine more sustainable pathways for global prosperity.

- **Resource Use:** Linear economies extract and resources at high rates, while circular economies conserve and regenerate resources, maximising their value over time.
- Waste: In linear systems, waste is considered the final stage of production; in circular systems, waste is viewed as a resource to be reintegrated into productive cycles.
- Design Philosophy: Linear models prioritise efficiency and output, often at the cost of durability; circular models prioritise durability, modularity, and recyclability, designing products for multiple life cycles.
- Economic Value: Linear systems generate value primarily through volume of production and consumption; circular systems create value through innovation, resource efficiency, and long-term sustainability.
- Environmental Impact: Linear economies drive resource depletion and environmental degradation; circular economies reduce ecological footprints and actively contribute to regeneration.

3.5 Benefits of the Circular Economy

The adoption of circular practices brings a wide range of benefits that extend across environmental, social, and economic dimensions.

Environmental Protection: By extending product lifespans and prioritising reuse, repair, and recycling, the Circular Economy reduces demand for virgin raw materials, conserves biodiversity, lowers greenhouse gas emissions, and mitigates pollution.

Economic Opportunity: Circular models create entirely new markets for recycling, refurbishment, and sustainable design. This transition has the potential to generate millions of jobs, particularly in emerging sectors, while simultaneously supporting more resilient business models.

Innovation and Resilience: By encouraging companies to rethink product design and resource management, circular practices stimulate innovation. Firms become better equipped to adapt to changing market conditions and consumer expectations, enhancing long-term stability and competitiveness.

Cultural Transformation: Beyond measurable outcomes, the Circular Economy fosters a shift in cultural values—from short-term consumption toward long-term responsibility, creativity, and environmental stewardship.

For educators, highlighting these benefits can inspire students to see themselves as active contributors to a sustainable and equitable future.

3.6 Understanding the Circular Economy

The concept of the Circular Economy offers a departure from the prevailing linear model of take-make-consume-dispose. In contrast to a system that depends on abundant raw materials and fosters excessive waste, the Circular Economy advocates for a restorative and regenerative model of production and consumption. It is built upon the practices of sharing, leasing, repairing, refurbishing, recycling, and extending the life cycles of products and materials. By keeping resources in circulation for as long as possible, it minimises waste while generating new forms of social and economic value.

Within an educational context, these principles invite students to envision alternatives to the "throwaway culture" that dominates modern consumption. For example, a classroom project might challenge students to design products that are durable, modular, and repairable, or to analyse the environmental consequences of planned obsolescence—the deliberate shortening of product lifespans to encourage repeated purchases. Such exercises encourage students to think critically about consumption patterns and empower them to imagine more responsible and sustainable alternatives.

Equally central to the Circular Economy is the idea of regeneration: the capacity not merely to reuse or recycle but to restore and replenish natural systems. This orientation shifts the focus away from damage limitation toward active environmental stewardship. Recycling and upcycling, meanwhile, highlight the creative potential of circular thinking. Recycling ensures that valuable materials are reintroduced into production systems, while upcycling transforms waste into items of greater value, offering powerful lessons in innovation and resource efficiency.

At its foundation, the Circular Economy fosters a more balanced and respectful relationship between human activity and the natural environment.

3.6.1 The Case for Change: Statistics and **Trends**

Empirical data underscores the urgent necessity of transitioning to circular models. According to the Global Material Flows Database. global material consumption reached 89.4 billion tonnes in 2019—a figure that continues to rise. The challenge of electronic waste illustrates this crisis vividly: the Global E-waste Monitor reports that 53.6 million tonnes of e-waste were generated in 2019, of which only 17.4% was formally collected and recycled. The remainder contributes to pollution, resource depletion, and hazardous impacts on human health.

These figures demonstrate that current systems of production and consumption are unsustainable. Circular principles offer a promising pathway forward, providing frameworks for the responsible management of resources and the repurposing of products across their life cycles. The economic potential of this transition is equally striking. Research by the Ellen MacArthur Foundation estimates that a global shift to circular practices could unlock as much as \$4.5 trillion in additional economic output by 2030. Such projections suggest that circularity is not only an environmental imperative but also a driver of innovation, competitiveness, and resilience in the global economy.

3.7 Principles of the Circular Economy

The circular economy is guided by ten key principles:

Waste becomes a resource

All biodegradable materials return to nature; non-biodegradable materials are reused.

Second use

Products are reintroduced into the economic system once they no longer serve their initial purpose.

Reuse

Functional products or components are reused to create new items.

Repair

Damaged products are restored to extend their lifespan.

Recycle

Materials found in waste streams are processed into new resources.

Valorization

Energy is recovered from non-recyclable waste in sustainable ways.

Functionality economy

Prioritizing access over ownership (e.g., rental or service-based models), ensuring products return to producers for reuse or disassembly.

Energy from renewable sources

Fossil fuels are replaced with renewable energy throughout the product life cycle.

Eco-design

Products are designed with environmental impacts in mind across their entire life cycle.

Industrial and territorial ecology

Cooperation among industries within a region to optimize material, energy, and service flows.

4. Pollution and Environmental Protection

4.1 Introduction to Pollution

Pollution is one of the most pressing challenges facing humanity today. In simple terms, pollution occurs when harmful substances or forms of energy are introduced into the environment at levels that cause adverse effects on living organisms and natural systems. These substances or agents, known as pollutants, may be chemical, physical, or biological. Pollutants can be natural, such as volcanic ash. They can also be created by human activity, such as trash or runoff produced by factories. Pollutants damage the quality of air, water, and land.1

Pollution disrupts ecological balance, reduces the quality of natural resources, and directly affects human health. Understanding pollution is therefore essential not only for scientific literacy but also for the promotion of sustainable practices and responsible citizenship.

4.2 Historical Background

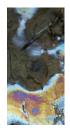
Human societies have always interacted with their environment, but pollution became a significant global concern with the onset of the **Industrial Revolution** in the 18th and 19th centuries. The widespread use of coal, oil, and later synthetic chemicals led to unprecedented levels of emissions into the air, water, and soil.

By the mid-20th century, visible smog in industrial cities, contaminated rivers, and growing health crises demonstrated the urgent need to address pollution. Today, pollution remains both a local issue (e.g., city air quality, contaminated water supplies) and a global issue (e.g., climate change, plastic pollution in oceans).

4.3 Main Types of Pollution

a) Air Pollution

- · Caused primarily by emissions from industry, transport, energy production, and agriculture.
- Common pollutants include carbon dioxide (CO₂), nitrogen oxides (NO_x), sulphur oxides (SO_x), carbon monoxide (CO), and particulate matter.
- Impacts include respiratory diseases, climate change, and acid rain.



b) Water Pollution

- Results from the discharge of untreated sewage, industrial waste, agricultural runoff (fertilizers and pesticides), and oil spills.
- Leads to the loss of aquatic biodiversity, unsafe drinking water, and health risks such waterborne diseases.

c) Soil Pollution

- Caused by excessive use of agrochemicals. improper waste disposal, mining, and industrial activities.
- · Depletes soil fertility, contaminates crops, and threatens food security.

d) Others kind of Pollutions

(light, Noise, Thermal, Radioactive ecc)

4.4 Causes of Pollution

Pollution is closely tied to human activities, particularly those associated with:

- Industrialisation (factories, energy plants, chemical production).
- Urbanisation (waste generation, traffic congestion, construction).
- Agriculture (intensive use of fertilizers, pesticides, and livestock) emissions).

- Deforestation (loss of natural filters like trees that absorb carbon dioxide).
- Unsustainable consumption (overreliance on plastics, fossil fuels, and disposable goods).

Natural events such as volcanic eruptions or forest fires may also cause pollution, but the scale and persistence of human-induced pollution far exceed natural processes.

4.5 Impacts of Pollution

On Human Health

- Respiratory diseases (asthma, chronic bronchitis, lung cancer).
- · Cardiovascular problems.
- Increased child mortality and reduced life expectancy in highly polluted areas.
- · Psychological stress and reduced quality of life.

On the Environment

- · Loss of biodiversity in air, water, and soil ecosystems.
- Climate change due to greenhouse gas emissions.
- Soil degradation and desertification.
- Contamination of food chains through bioaccumulation and biomagnification of toxic substances.

On Society and Economy

- · Increased healthcare costs.
- · Reduced agricultural productivity.
- Damage to infrastructure from acid rain or corrosion.
- Decline in tourism and cultural heritage degradation.

4.6 Global and Local Dimensions of Pollutio

Pollution must be understood at both local and global scales. While local pollution problems can sometimes be mitigated with community-based solutions (e.g., waste management, urban planning), global challenges such as climate change and plastic accumulation in oceans require international cooperation and agreements.

Key international frameworks include:

- The **Kyoto Protocol** (1997) and the **Paris Agreement** (2015) on greenhouse gas emissions.
- The Basel Convention on hazardous waste management.
- The emerging Global Treaty on Plastic Pollution, currently under negotiation.

4.7 Pedagogical Relevance

Pollution is both a scientific and social problem, deeply rooted in human activity and modern lifestyles. It poses severe risks to human health, ecosystems, and the planet's future. However, by studying pollution in schools, we can raise awareness, inspire action, and prepare new generations to seek sustainable solutions.

An introduction to pollution, therefore, is not only an academic exercise but also a moral and civic responsibility, equipping students with the knowledge and motivation to protect life and the environment.

Teaching about pollution is fundamental in today's educational context for several reasons:

- **Scientific Literacy**: Students learn the scientific basis of pollution and its ecological and health impacts.
- Civic Responsibility: Knowledge about pollution empowers students to adopt sustainable practices in their daily lives.
- Interdisciplinary Learning: Pollution connects natural sciences with geography, health education, social studies, and ethics.
- **Critical Thinking**: Analyzing causes, impacts, and solutions to pollution helps students develop problem-solving skills.
- Global Citizenship: Understanding pollution fosters awareness of global interdependence and the need for international cooperation.

Education plays a pivotal role in shaping behaviours and attitudes towards the environment. A lack of awareness and understanding often leads to unsustainable practices that pollution. environmental Bv integrating comprehensive environmental education into school curriculums and community programs, we can empower individuals to make informed decisions and adopt eco-friendly habits. Promoting the importance of recycling, reusing, and reducing waste can significantly mitigate the adverse effects of pollution. Furthermore, educating people on segregating management practices, such as proper waste recyclables, composting organic waste, and safely disposing of hazardous materials, can prevent soil and water contamination. Transportation is another significant contributor to pollution. Educating the public about the environmental impacts of vehicle emissions and promoting alternative modes of transportation like public transit, carpooling, and cycling can help reduce carbon emissions and improve air quality.

Addressing pollution through educational methods is essential for fostering awareness and promoting sustainable practices. Integrating environmental education into school curriculums can instil a sense of responsibility from a young age, while hands-on learning experiences like field trips and nature projects offer practical insights into environmental issues.

Addressing environmental pollution requires a multifaceted approach that includes not only policy interventions and technological advancements but also a concerted effort to educate and raise awareness among the public. By investing in environmental education and promoting sustainable practices, we can pave the way for a greener, healthier future for all.

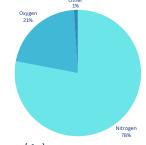
By empowering individuals and communities through education, we can inspire meaningful action, advocacy, and policy changes to combat pollution and promote a healthier, more sustainable future for all.3

5. Air Pollution and the Greenhouse Effect

5.1 The Importance of Air for Life

Air is indispensable for life on Earth. Breathing is vital for the survival of humans, animals, and plants. Air not only enables respiration but also regulates the Earth's temperature, distributes energy, and supports the balance of natural ecosystems.

From a scientific point of view, air is a mixture of gases that surrounds the planet and forms the atmosphere. This gaseous envelope is held in place by the Earth's gravitational force and extends from the surface to hundreds of kilometres in height, gradually thinning into outer space.



Ithough it seems intangible, the atmosphere plays a protective role: it shields the planet from harmful solar radiation, maintains the conditions necessary for liquid water, and moderates climate and weather patterns.

Composition of Air

The atmosphere is primarily composed of:

- 78% Nitrogen (N)
- 21% Oxygen (O₂)
- 1% other substances, including:
 - Water vapour (linked to local humidity)
 - Ozone (O₃)
 - Carbon dioxide (CO₂)
 - Hydrogen (H)
 - Inert gases such as Krypton (Kr) and Argon (Ar)

Air performs multiple interconnected functions that sustain both ecosystems and human societies:

Respiration and Photosynthesis	Oxygen is essential for animal and human respiration.
	Carbon dioxide is absorbed by plants and used in photosynthesis, producing oxygen as a by-product.
2. Climate Regulation	Atmospheric gases trap heat and distribute solar energy, making Earth habitable.
	Water vapour in the air drives the hydrological cycle through evaporation, condensation, and precipitation.

3. Protection	The atmosphere blocks harmful solar radiation, particularly thanks to the ozone layer.
S. Protection	It also slows down meteorites, preventing most from reaching the Earth's surface.
4. Circulation of Matter and Energy	Winds and atmospheric currents distribute heat, nutrients, and water vapour across the globe, connecting distant regions and ecosystems.

5.2 Air and Human Societies

Human development, culture, and daily life are intimately tied to air. Clean air is fundamental to health, productivity, and quality of life. At the same time, air has been harnessed by societies in different ways:

- As a source of energy (through wind power).
- As a medium for transportation (sailing, aviation).
- As an element of cultural expression, symbolising freedom, breath, or spirit in many traditions.

Yet, human activities increasingly alter the natural balance of air, mainly through pollution from industrial processes, fossil fuel combustion, and deforestation. These changes contribute to global problems such as air pollution, respiratory diseases, and climate change, making air stewardship a pressing issue of our time.

5.3 Air as a Common Good

Air is far more than the invisible medium we move through daily—it is the very foundation of life on Earth.

5.4 Air and Human Societies

Its composition, functions, and cultural significance make it both a scientific **subject of study** and a shared **responsibility**. For teachers and students, learning about air means understanding the deep interdependence between natural cycles and human activity, and recognising the urgent need to preserve this essential resource for present and future generations. International organisations, such as the United Nations, have recognised that the right to a clean, safe, and healthy environment includes the right to breathe unpolluted air. This perspective highlights the collective responsibility to care for and manage air as a shared natural heritage.

Just like water and soil, air is a renewable but not unlimited resource. Its self-purification capacity can be overwhelmed if pollutant emissions exceed natural absorption. For this reason, education plays a central role: by fostering awareness, knowledge, and action, schools and communities can contribute to reducing pollution and protecting this vital element.

5.5 Air Pollution

Despite its vital importance, air quality is increasingly threatened. Air pollution represents a serious environmental and public health problem.

Causes of Air Pollution

Most air pollution is linked to socio-economic activities, including:

- Energy production from combustion (coal, oil, natural gas).
- · Mining and construction activities.
- Transport and industrial processes.
- · Agricultural and livestock practices.

The burning of fossil fuels emits pollutants such as:

- Carbon dioxide (CO₂)
- Sulphur oxides (SO_x)
- Nitrogen oxides (NO_x)
- Carbon monoxide (CO)
- Particulate matter (PM)

These pollutants not only degrade air quality but also cause acid rain, which negatively affects soils, vegetation, water bodies, and agricultural yields.

5.6 Greenhouse Gases

A subset of air pollutants is especially significant because of their ability to trap heat in the atmosphere. These are known as greenhouse gases (GHGs), formally recognized in the Kyoto Protocol:

- Carbon dioxide (CO₂)
- Methane (CH₄)
- Nitrous oxide (N₂O)
- Fluorinated (hydrofluorocarbons gases perfluorocarbons - PFCs, and sulphur hexafluoride - SF₆).

Due to industrialisation, deforestation, and large-scale agriculture, GHG concentrations have reached record levels. According to the United Nations (2021), these levels are unprecedented in the last three million years, marking a historic disruption in Earth's atmospheric balance.

5.7 The Greenhouse Effect

The greenhouse effect is a natural process by which certain gases trap heat in the Earth's atmosphere, allowing life to exist. However, excessive emissions from human activities amplify this effect. leading to global warming and climate change.

Mechanism

Greenhouse gases prevent part of the sun's radiation from being reflected back into space, instead trapping it in the atmosphere. This retained solar energy increases global temperatures and disrupts climate systems.

Sources of Greenhouse Gas Emissions

- Urban areas: industrial activity, transport, rising energy demand, and inadequate waste management.
- Rural areas: agricultural burn-offs, poor livestock farming practices, use of solid fuels (wood, charcoal) for cooking or heating, and forest fires.

Consequences

- · Rising global temperatures.
- Intensification of extreme weather events (storms, droughts, floods).
- Environmental degradation (loss of biodiversity, desertification).
- Severe health impacts (respiratory illnesses, cardiovascular disease, premature deaths).

5.8 The Five Main Greenhouse Gases

You may already know about the greenhouse effect and how it drives climate change. But which greenhouse gases created by

human activities have the greatest impact on global warming? Not all gases are equally harmful: they come from different sources, remain in the atmosphere for different lengths of time, and have different effects.

Together, these five gases account for about 95% of human-caused global warming:

GAS	SOURCE	LIFETIME IN THE ATMOSPHERE
1. Carbon Dioxide (CO₂) – 53% of total warming	Burning fossil fuels, deforestation, cement and material production.	Very long. About 80% lasts for 200 years; some can remain for up to 30,000 years.
2. Methane (CH₄) − 15% of total warming	Agriculture (especially livestock), rice cultivation, waste sites, sewage treatment, coal mining, oil and natural gas distribution.	About 12 years.

3 Halogonated Compounds refrigeration air	GAS	SOURCE	LIFETIME IN THE ATMOSPHERE
gases such as carbon monoxide (CO), nitrogen dioxide (NO ₂), and of total warmin A few weeks to a few volatile organic compounds (VOCs) react in sunlight, mainly from	(CFCs, HCFCs, HFCs, PFCs, SF ₆ ,	production in refrigeration, air conditioning, electronics, medicine, and	
		gases such as carbon monoxide (CO), nitrogen dioxide (NO ₂), and volatile organic compounds (VOCs) react in sunlight, mainly from	
Fertilizer use, fuel combustion, chemical production, sewage treatment. Fertilizer use, fuel combustion, chemical production.		combustion, chemical production, sewage	Up to 114 years.

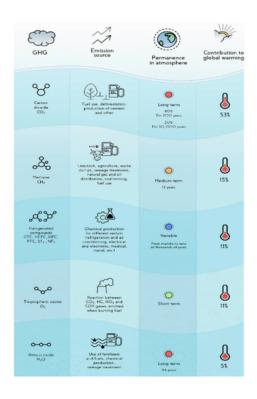
5.9 The fight to Greenhouse Gas Emissions

To limit global warming, we need to reduce emissions of these gases. One of the most effective strategies is to use renewable energy sources such as solar, wind, and hydro power. Unlike fossil fuels, renewables produce electricity without polluting the air or harming the environment.

In addition, protecting forests and oceans is essential. These natural "carbon sinks" absorb carbon dioxide, helping to balance Earth's

Teaching about air, pollution, and the greenhouse effect is essential to:

- Develop **scientific literacy** in students, helping them understand natural processes.
- Raise awareness of environmental challenges and their link to everyday life.
- Encourage responsible citizenship, motivating students to reduce pollution through sustainable practices.


Teachers can use this topic to connect multiple disciplines science, geography, social studies, and health education—while fostering critical thinking and problem-solving skills in relation to one of the most pressing issues of our time.

References

United Nations. (2021). Climate Change | United Nations. Retrieved from: https://www.un.org/en/

5.10 Suggested Classroom Activities

Activity 1. Experiment: The Greenhouse Effect in a Jar	
Objective	To demonstrate how greenhouse gases trap heat.
Materials	 2 glass jars with lids 2 thermometers 1 desk lamp (to simulate sunlight) Small amount of dry ice or a source of carbon dioxide (optional, depending on safety conditions)
Procedure	 Place a thermometer inside each jar. Seal both jars. Leave one with normal air; fill the other with extra CO₂ (or leave sealed if dry ice is unavailable). Place both jars under the lamp. Observe and record the temperature change every 5 minutes.
Discussion questions	 Which jar heated up faster? Why? How does this relate to the Earth's atmosphere and climate change?

Activity 2. Debate: "Economic Development vs. Clean Air"

Objective	To develop critical thinking on the socio-economic causes of pollution.
Procedure	1. Divide the class into two groups: Group A: Defend the importance of industrial and economic activities. Group B: Argue for environmental protection and the reduction of air pollution. 2. Each group prepares arguments with evidence. 3. Hold a structured debate moderated by the teacher. 4. Conclude with a reflection on how development and sustainability can coexist.

Activity 3. Role-Play Simulation: The Climate Summit	
Objective	To understand the global dimension of greenhouse gas emissions and negotiations
Procedure	1. Assign roles to groups of students (e.g., different countries, industries, NGOs, scientists). 2. Provide each group with basic data on emissions, economic priorities, and challenges. 3. Organize a mock "summit" where students negotiate emission reductions, funding for renewable energy, or adaptation measures.
Reflection	 What compromises were reached? Who gained or lost the most? How realistic are global agreements in practice?

Activity 4. Mini Research Project: Air in Our Lives To encourage independent inquiry and **Objective** interdisciplinary learning. In small groups, students choose a topic such as: • The health impacts of polluted air. • The role of forests in maintaining clean air. • Renewable energy as a solution. • Cultural traditions linked to clean **Procedure** air and nature. Each group presents findings as: • A short presentation, • An infographic, Or a mini wall newspaper.

6. Water

Water is one of the most vital natural resources for life on Earth. It is a liquid substance with no odour, taste, or colour, covering about 70% of the planet's surface. Its basic chemical formula is H_2O , composed of two hydrogen atoms and one oxygen atom. However, in reality, water often contains additional elements and compounds, such as mineral salts, organic matter, heavy metals, microorganisms, and sometimes pollutants.

This dual condition—being both pure in its essence and yet constantly transformed by natural and human processes—makes water a **complex and dynamic resource**.

6.1 Water as a Human Right

In 2010, the United Nations General Assembly (Resolution 64/292) formally recognised the human right to safe drinking water and sanitation, declaring them essential for the fulfilment of all human rights. More recently, in 2022, the Assembly went further by

recognising the right of every person to a safe, clean, healthy, and sustainable environment.

This recognition is not merely symbolic. It acknowledges that the degradation of ecosystems, the impacts of climate change, the unsustainable use of natural resources, and the pollution of water, air, and soils undermine people's ability to enjoy this right. Such resolutions are the outcome of decades of advocacy by civil indigenous peoples, scientists, and international society. organisations.

Water is central to the **2030 Agenda for Sustainable Development**. Specifically, Goal 6: Clean Water and Sanitation calls on all countries to ensure the availability and sustainable management of water and sanitation for all.

This goal links directly to many others, such as Goal 3 (Good Health and Well-being), Goal 13 (Climate Action), and Goal 15 (Life on Land). Without sustainable water governance, achieving sustainable development as a whole becomes impossible.

6.2 Our Relationship with Water

Water is essential for life, culture, and development, but it is also a finite and vulnerable resource. Despite its apparent abundance, only a small portion is available for human use, and growing pressures from climate change, pollution, and overexploitation are placing it at risk.

For this reason, teaching about water in schools is fundamental. It allows students to:

- Understand its scientific and ecological dimensions.
- Appreciate its cultural and sensory values.

- Develop awareness of their rights and responsibilities regarding water use.
- Engage in practices that promote sustainability and solidarity.

Water education is therefore a cornerstone of environmental education, encouraging respect, conservation, and collective action to secure this precious resource for present and future generations.

Human beings connect with water in multiple ways:

- Biological connection: Water is indispensable for hydration, hygiene, food production, and health.
- Sensory connection: We experience water through touch, sight, and sound—the feel of rain, the sound of a waterfall, the taste of fresh water when thirsty, the sight of oceans or rivers.
- · Social and cultural connection: Water is often celebrated in rituals, festivals, and traditions. It is also perceived as a resource -renewable but not inexhaustible. Its natural cycle ensures replenishment, but mismanagement and overuse can deplete aquifers, dry up wetlands, or cause saline intrusion in groundwater.

Thus, water is not only a resource for survival and economic activities but also a cultural and emotional element that enriches human life.

6.3 Water and Society

Water plays a central role in agriculture, livestock production, industry, and electricity generation. However, these uses also create vulnerabilities:

- Overexploitation of groundwater reduces natural recharge, causing ecosystems like springs and wetlands to disappear.
- agriculture, Pollution from industry. and households contaminates rivers and aquifers.
- · Climate change alters rainfall patterns, leading to droughts, floods, and reduced water security.

Therefore, while access to clean water is a human right, it is equally our duty to care for water, avoid waste, and prevent pollution. Responsible management and governance are fundamental to guaranteeing water security for future generations.

6.4 Water on Our Planet

Although the Earth is often called the "blue planet," only a small fraction of its water is available for human use:

- 97% of all water is salt water, contained in seas and oceans.
- 3% is fresh water, but about two-thirds of this is locked in glaciers and ice caps.
- · Less than 1% of freshwater is accessible in rivers, lakes, and underground aquifers for human consumption.

This limited availability underlines the need for careful and prudent management of water resources.

♦ 6.5 The Water Cycle

Water constantly moves through a natural cycle that connects oceans, atmosphere, and land. Key processes include:

- Evaporation: Water from oceans, rivers, and lakes rises into the atmosphere.
- Condensation: Water vapour forms clouds.
- **Precipitation**: Rain or snow returns water to the surface.
- Infiltration and recharge: Water seeps into soil and replenishes underground aquifers.

 Runoff: Water flows through rivers and streams back to seas and oceans.

This cycle ensures the renewal of freshwater supplies, but its balance is being disrupted by deforestation, pollution, and climate change.

6.6 Types of Water

Water can be classified into different categories according to its origin and use:

- 1. Raw Water: Water found in nature without treatment.
- 2. Potable Water: Water that meets quality standards and is safe for human consumption.
- 3. Wastewater: Water discharged after domestic, industrial, or agricultural use.
- 4. Treated Wastewater: Wastewater that has undergone treatment to remove pollutants, making it safer for disposal or reuse.

This classification highlights the importance of treatment systems and water governance in protecting public health and ecosystems.

6.7 Water Pollution

Water pollution occurs when substances harmful to living beings are released into rivers, lakes, seas, or underground aquifers. These substances may come from natural processes, but most water pollution is caused by human activities. Contaminated water not only harms ecosystems but also threatens food security, economic development, and public health.

Main Sources of Water Pollution

a) Domestic Sources

- Wastewater from households, including detergents, oils, plastics, and organic waste.
- Untreated sewage, which introduces harmful bacteria, viruses, and parasites.

b) Industrial Sources

- Factories often discharge chemicals, heavy metals, and toxic substances directly into rivers and lakes.
- Thermal pollution, caused by hot water released from industrial processes, alters aquatic ecosystems.

c) Agricultural Sources

- Fertilisers containing nitrates and phosphates can cause eutrophication (excessive algae growth, reducing oxygen in water).
- Pesticides contaminate water and accumulate in food chains.
- Animal waste from intensive livestock farming increases bacterial contamination.

d) Other Causes

- · Oil spills in oceans.
- Plastic waste, especially microplastics, which persist for centuries.
- Deforestation and mining, which increase sedimentation and reduce water quality.

6.8 Consequences of Water Pollution

For Health

- · Spread of waterborne diseases such as cholera, diarrhoea, and hepatitis A.
- · Long-term effects from heavy metals and toxic chemicals, including cancer and developmental disorders.

For Ecosystems

- · Loss of aquatic biodiversity as fish, amphibians, and plants cannot survive in polluted environments.
- Disruption of food chains due to bioaccumulation of toxic substances.
- · Destruction of wetlands, coral reefs, and mangroves, which serve as natural filters and protect against floods.

For Society

- · Reduced availability of safe drinking water.
- · Decreased agricultural yields due to soil and water contamination.
- Higher costs for water treatment and healthcare.

6.9 Suggested Classroom Activities

Activity 1. Where Does Our Water Come From?

Main Theme and Focus

This activity is an interdisciplinary action-study project, designed to involve teachers and students in a collaborative investigation of the sources of water consumed in their school and local households. The aim is to foster awareness about water care, conservation, and the protection of water sources, while connecting scientific knowledge with civic responsibility.

Preparatory Steps and Activities

1. Preliminary Study Students research the origin of the local water supply, with the help of local and regional authorities.

They investigate:

- The drainage basin where the water originates.
- The route and means of transportation.
- Treatment and purification processes.
- Methods of distribution and final. access.

Preparatory Steps and

Activities

Students create illustrative diagrams and drawings to represent their findings, which are later exhibited in school.

2. First Conclusions

- Classrooms hold discussion sessions, facilitated by different subject teachers, to analyse:
 - The source and route of local water.
 - Its state (potability, cleanliness, quality).
 - Its uses and distribution (equity, efficiency, availability).

0

- Together, the students reach shared conclusions about:
 - The overall situation of local water.
 - Key challenges or problems.

The importance of communicating their findings to the community.

Preparatory Steps and Activities

3. Civic Campaign

- Students design a public awareness campaign to highlight the main water-related problems identified.
- Campaign elements may include:
 - Short awareness messages.
 - o Posters and infographics.
 - Informative talks addressed to families, institutions, and community groups.

0

 The campaign emphasizes the importance of responsible water use and the need to protect water sources.

To develop the campaign, students and teachers first reflect on the following guiding questions:

- What is the aim of the campaign?
- Who is the target audience?
- What results do we expect to achieve?
- What are the key issues?
- What messages will carry those issues?
- Through which channels will the messages be broadcast?
- How will we integrate community suggestions?

How will we monitor responses and measure impact?

Evaluation of Activities

3The evaluation process is guided by a Desirable Scenario, which in this case is defined as follows:

"Through a celebration and study, the educational community and the general public learn about the value of water from different perspectives and experiences, and commit to protecting and using it responsibly."

Two expected results can be highlighted:

- 1. The educational community becomes aware of the importance of the water cycle and the value of water in human society and ecosystems.
- 2. The community is inspired to commit—short, medium, and long term—to the efficient and sustainable use of water.

Evaluation Criteria

The following **four evaluation criteria**, adaptable to different educational levels and subjects, can be used to assess the activity:

1. Knowledge

Understanding of the value of water.

Awareness of the water cycle, watersheds, and the concept of the water footprint.

Evaluation Criteria

- Participation and Interest
 - Degree of student and teacher involvement in the exhibition, campaigns, discussions, and games.
- Outputs Obtained
 - Quality and creativity of the products generated (drawings, posters, campaigns).
 - Concrete commitments or action plans proposed.
- Follow-Up Proposals
 - Ideas for long-term actions in the school and community.
 - Plans for maintaining and expanding water-care initiatives.

Other Activities	
Water Filtration Experiment	Build a simple filter using sand, gravel, and cotton. Compare untreated dirty water with filtered water. Discuss limitations of natural filtration.
Community Research	Investigate the local river, lake, or water supply. Are there signs of pollution? What are possible causes?
Poster Campaign	Students design posters or infographics on "How to Prevent Water Pollution" to display in school.
C. Reflection Prompts	 "What would happen if my town's river became too polluted to use?" "How do my daily choices contribute to clean or polluted water?" "What message would I give to future generations about protecting water?"

7. Introduction to Soil

Soil is one of the planet's most vital natural resources. It forms the foundation for terrestrial life, providing the essential nutrients, minerals, and water that sustain plants, which in turn support animals and humans. The **Food and Agriculture Organization of the United Nations (FAO)** defines soil as a thin layer that develops very slowly, over hundreds or even thousands of years, through the weathering of rocks and the interaction of climate, water, wind, plants, and microorganisms.

This process makes soil a non-renewable resource on the human timescale. While it may take centuries to generate a few centimetres of fertile topsoil, unsustainable human activities can degrade or destroy it in just a few years.

7.1 Features and Importance of Soil

WSoil is far more than inert material beneath our feet; it is a living ecosystem. A single spoonful of fertile soil can contain:

- Millions of bacteria.
- Hundreds of thousands of yeast cells,
- Fungi, protozoa, and microfauna,
- Alongside insects, worms, and other visible organisms.

Together, these life forms regulate organic matter decomposition, nutrient cycling, and soil fertility. Soil therefore plays multiple critical roles:

- Nutrient cycling: provides essential elements for plants.
- Water regulation: absorbs, filters, and stores water.
- Habitat: supports billions of organisms, both visible and microscopic.
- Carbon storage: regulates the carbon cycle, mitigating climate change.
- Foundation for human activity: sustains agriculture, forestry, and infrastructure.

Yet, despite these functions, the global stock of fertile soil is shrinking. FAO warns that degradation and loss of soil fertility threaten food security for a population expected to reach 9 billion by 2050.

7.2 Key Soil Processes and Agricultural **Practices**

Soil is a **living resource**, essential for food production, biodiversity, climate regulation, and human culture. Its slow formation contrasts with the rapidity of its degradation under unsustainable practices. Protecting soil from erosion, desertification, and pollution is not only an environmental necessity but also a moral obligation to future generations.

By integrating traditional knowledge with sustainable agricultural practices, and by fostering awareness in schools and communities, we can ensure that soil continues to provide its life-sustaining functions.

Soil Erosion

Erosion is the wear, removal, and displacement of soil particles by wind or water. Unprotected soils—such as those without vegetation—are particularly vulnerable. Heavy rains, floods, and surface runoff wash away nutrients, while wind strips away fine fertile particles. Over time, erosion reduces productivity, damages ecosystems, and silts rivers and reservoirs.

Desertification

The FAO defines desertification as the degradation of soil in arid and semi-arid regions due to a combination of climatic variability, geological factors, and human pressures (such as overgrazing, deforestation, and poor irrigation practices). Desertification not only diminishes biodiversity but also endangers the survival of human communities.

Crop Rotation

Crop rotation involves **sowing different crops** on the same land in successive years. This practice reduces pests and diseases, improves soil structure, and helps maintain fertility. For example, alternating cereals with legumes allows soils to replenish nitrogen naturally, reducing the need for chemical fertilizers.

Crop Association

Also known as **intercropping**, this practice consists of planting different species together in the same field. Legumes such as beans or soybeans fix nitrogen, benefiting companion crops like maize or tomatoes. Other species, such as garlic or peppers, repel pests from neighbouring plants. Crop association increases biodiversity, improves resilience, and makes efficient use of nutrients.

Soil and Food Security

Soil underpins **food security**, defined as the stable and continuous availability of safe, nutritious, and accessible food for all people. Without fertile soil, agricultural productivity declines, threatening not only survival but also social and economic development. Protecting soils from degradation is therefore fundamental to achieving global goals of health, equity, and sustainability.

7.3 Soil Pollution

Our relationship with soil is both practical and cultural. On a sensory level, walking barefoot on grass or sand fosters a feeling of closeness and connection with the Earth. On a cultural level, the word "cultivation" itself is linked to culture, reflecting the social, symbolic, and creative dimensions of working the land.

Soil sustains agriculture—the clearest socio-economic link we have with it. Farming does not only produce food; it creates traditions, rituals, and practices that define communities. Protecting soil quality is thus essential, not only for survival but also for the preservation of cultural identity.

While natural processes shape soil over centuries, human activities can degrade it rapidly.

Soil pollution occurs when harmful substances—chemical, biological, or waste-based—accumulate in soil, reducing its quality, fertility, and ability to sustain life.

Main Sources of Soil Pollution

- 1. Agricultural practices:
 - Excessive use of chemical fertilizers and pesticides,
 - Monocultures and intensive farming.
 - Overuse of irrigation, leading to salinisation.
- 2. Industrial activities:
 - Disposal of heavy metals, oils, and chemicals,
 - Mining operations and waste from factories.
- 3. Urban activities:
 - Solid waste mismanagement,
 - Leakage from landfills and sewage,
 - Construction and infrastructure expansion.

4. Deforestation and land-use change:

- · Removal of vegetation accelerates erosion,
- Loss of organic matter diminishes soil resilience.

Consequences of Soil Pollution

- Loss of fertility: makes land unproductive for farming.
- Contamination of food chains: heavy metals and pesticides accumulate in crops, posing risks to human health.
- Water pollution: contaminated soil leaches pollutants into rivers, aquifers, and lakes.
- Loss of biodiversity: microorganisms and soil fauna decline, reducing ecological functions.

7.4 Strategies for Prevention and Remediation

- Sustainable agriculture: crop rotation, intercropping, organic farming, and reduced pesticide use.
- Soil conservation techniques: terracing, cover crops, and agroforestry.
- **Pollution control**: proper waste management, treatment of industrial effluents, and reforestation.
- Education and awareness: promoting soil stewardship as a collective responsibility.

7.5 Suggested Classroom Activities

Activity 1. "The role of the soil"

Main theme and focus

This activity encourages students and teachers to jointly explore the role of soil in food production and environmental health. By investigating the condition of local soils, agricultural practices, and their impact on food and ecosystems, the educational community develops awareness about soil care, conservation, and sustainable land use.

Preparatory Steps and Activities

1. Preliminary Study

- Students, with guidance from teachers, gather information on the soils in their locality:
 - What types of soil exist in the region?
 - How are they used (agriculture, construction, recreation, etc.)?
 - Are there visible signs of erosion, contamination, or degradation?
- Students collect soil samples from different areas (schoolyard, nearby fields, urban lots) and observe texture.

Preparatory Steps and Activities

1.colour, and organic matter content.

 Create diagrams and illustrations to show the soil cycle (from formation to use and regeneration).

First Conclusions

- Class discussions with teachers from different disciplines (science, geography, social studies, arts) to analyse:
 - How soils contribute to food production.
 - What threats local soils face (erosion, pollution, compaction, salinisation).
 - How these threats affect human communities and biodiversity.

Draft collective conclusions on the importance of protecting soils.

Practical Activities:

- Build a simple soil erosion
 experiment (two boxes with soil:
 one covered with vegetation,
 one bare, exposed to simulated
 rain). Compare the runoff water.
- Start a school garden using compost to demonstrate healthy soil management.

Organise a field trip to a farm, nursery, or conservation project to observe soil care in practice.

Civic Campaign:

Design a campaign within the school and community to promote sustainable soil use. Possible activities include:

- Posters, murals, and theatre plays about soil conservation.
- Short awareness videos about the dangers of soil pollution.
- A "Healthy Soil Day" exhibition where students present their experiments, artwork, and findings.

Key Questions for the Campaign

- What is the aim of our campaign? (e.g., prevent soil pollution, promote composting, encourage crop rotation).
- Who are the best target audiences? (school community, families, local farmers, neighbourhood associations).

- What results do we expect to achieve?
- What key messages will we share? (e.g., "Soil is life," "Protect our food source").
- Which communication tools will we use? (art, social media, talks, posters).
- How will we evaluate the campaign's impact?

Evaluation of Activities

The activities should be evaluated based on the "desirable scenario" developed by the interdisciplinary roundtable. For soil, this might be: "The educational community and local population understand soil as a living resource that sustains life, and commit to practices that prevent its degradation."

Evaluation Criteria and Indicators

1. Knowledge:

- Students understand the soil cycle, threats (erosion, pollution, degradation), and its role in food security.
- 2. Participation and Interest:
 - Attendance and engagement in experiments, campaigns, and discussions.
- 3. Outputs Obtained:
- Posters, experiments, school garden results, public campaigns, and collective commitments.
- 4. Follow-up Proposals:
- Ideas for future actions such as composting in school, extending gardens, organising annual "Soil Week," or adopting nearby degraded land for restoration.

Activity 2. "Participatory research – soil, organic food, and food sovereignty"

Main theme and focus

This activity engages students in a participatory study on the local relationship between soil, organic food, and food sovereignty. Through direct consultation and observation (visiting an organic garden or interviewing local market sellers), students learn to connect theory with real-life practices while reflecting on sustainable agriculture and community well-being.

Preparatory Steps and Activities

- An interdisciplinary group of teachers identifies the possibility of visiting an organic garden accessible to students.
- If no garden is available, a visit to a local market is organised to interview fruit, vegetable, or other food sellers.
- A preparatory visit is arranged to establish contacts, permissions, and logistics.

Pre-Organisational Phase and Preparation of Materials

 Teachers and students design a simple, age-appropriate script for semi-structured interviews.

- Thematic areas are chosen collaboratively to reflect scientific, social, and cultural aspects.
- Example guiding questions include:
 - How long have you been working in this field?
 - Why did you choose this career?
 - Do women and men share roles equally in this activity?
 - Why did you become interested in organic (or non-organic) production?
 - What challenges do you face?
 - What are your most popular products?
 - Are these linked to local culinary traditions?

Student Preparation

- Students are introduced to the principles of participatory research and taught how to conduct respectful interviews.
- Each student receives the thematic script and prepares notebooks for note-taking.
- Roles are distributed so that all students contribute to the interviews in an organised way.

Activities During the Visit

- Begin with a group meeting to highlight the importance of respect, listening, and curiosity during the consultation.
- Students ask questions in turn, ensuring clarity and active participation.
- Notes are taken by all students to build a collective record.
- The group thanks the interviewees for their collaboration.

Closing Activity (Part 1)

- After the visit, the group meets to categorise and analyse the responses.
- These notes are prepared for a collective session to draw conclusions and propose actions (Part 2).

Part 2: Conclusions and Action Proposals

Core Activity:

- A participatory session is organised where each student presents their interview notes.
- The person who asked each question restates it to the group so everyone can compare answers and impressions.
- Teachers guide a collaborative synthesis on a board or poster, creating a shared set of conclusions.

Action Proposals:

- Students design collective initiatives inspired by their findings, such as:
- Raising awareness campaigns about organic farming.
- School-based projects highlighting the role of food sovereignty.
- Public recognition and support for the local farmers or market sellers interviewed.
- Linking what was learned to school life (cafeteria, garden, exhibitions).

Possible Complementary Activity

Creation of a School Garden:

- Students design and maintain a small food-growing space within the school.
- This garden can supply the cafeteria, community events, or charitable initiatives.
- Follow-up groups maintain the garden and link it with classroom topics such as biology, chemistry, or social studies.

Evaluation of the Activities

The **Desirable Scenario** defined by the interdisciplinary roundtable for this activity is:

"The educational community recognises the value of organic food and soil care for local and national life." **Evaluation Purposes:**

 The educational community recognises the difference between

organic and conventional food. The educational community values soil care as fundamental for life.

Evaluation Criteria and Indicators:

1. Knowledge

 Understanding of soil-related issues (erosion, crop rotation, desertification, agroecology, food security, food sovereignty).

2. Participation and Interest

 Student involvement in the visit, interviews, group discussions, and follow-up.

3. Outputs Obtained

 Quality of interviews, conclusions, and proposed actions.

4. Follow-up Proposals

 Collective ideas for future actions at school, in the community, or through wider dissemination.

8. Waste Management

Waste is one of the most visible and pressing environmental challenges of our time. From household rubbish to industrial residues, modern societies generate vast quantities of waste every day, and how we manage this waste directly affects ecosystems, public health, and the sustainability of our economies. Waste management, therefore, refers to the collection, transport, treatment, recycling, and safe disposal of materials considered no longer useful, with the objective of reducing their negative impact on the environment and on human health while recovering as many resources as possible.

The fundamental aim of waste management is twofold:

- Protecting human health and the environment by preventing pollution of air, water, and soil.
- 2. Maximising resource efficiency by reintroducing materials into

the economic cycle, thereby reducing the need for virgin raw materials.

These objectives highlight the link between waste management and the broader framework of the circular economy, which seeks to minimise waste and keep products and materials in use for as long as possible.

8.1 Key Challenges of Waste Management

The twentieth century, often described as the age of mass production and mass consumption, also gave rise to the "throwaway culture." Products were increasingly designed for short-term use, prioritising convenience and rapid replacement rather than durability or repair. This model resulted in escalating volumes of municipal, industrial, agricultural, and electronic waste, much of which still ends up in landfills or pollutes oceans and soils. Today, waste is no longer considered an inevitable by-product of progress but a key environmental and socio-economic issue requiring innovative and sustainable approaches.

Waste management faces several challenges worldwide, including:

- Rising volumes of waste, especially in rapidly urbanising regions.
- Hazardous waste, such as electronic waste (e-waste) and chemical residues, which require specialised treatment.
- Inequalities in waste infrastructure, as many communities still lack adequate collection and disposal systems.
- Behavioural change, since reducing and separating waste depends heavily on individual and collective action.

8.2 The 5 R's Principle

The paradigm shift in recent decades has been to view waste not only as a problem but also as a potential resource. Materials once discarded can now be recovered, recycled, repurposed, or even transformed into energy. Concepts such as eco-design, reuse, repair, and valorization of materials are central to this new vision, which seeks to prevent waste from being generated in the first place.

The 5 R's Principle listed here below bring to the attention the need for everyone to perform five fundamental tasks: reduce, reuse, recycle, refuse, repair.

The paradigm shift in recent decades has been to view waste not only as a problem but also as a potential resource. Materials once discarded can now be recovered, recycled, repurposed, or even transformed into energy. Concepts such as eco-design, reuse, repair, and valorization of materials are central to this new vision. which seeks to prevent waste from being generated in the first place.

The 5 R's Principle listed here below bring to the attention the need for everyone to perform five fundamental tasks: reduce, reuse, recycle, refuse, repair.

- Reduce: rethinking our purchases by asking do I really need this to avoid buying unnecessary products and limit our consumption to the essentials.
- Reuse: extending a product's useful life by giving it a 2 new purpose (for example, an old T-shirt can be repurposed as a kitchen towel, glass bottles as food storage containers).

- Recycling: is the process of treating waste as a raw material that can be turned into something new (for example, Plastic bottles, paper, aluminium and glass can be processed to create new plastic, paper, aluminium and glass).
- 4 Refuse: means saying no when offered a product that has negative impacts on the environment.
- **Repair:** making the necessary changes and fixes to an item in poor condition to allow it to continue to be used.

These principles emphasize maximizing the utility of products, components, and materials through strategies that extend their lifespan. By doing so, the embedded energy, labor, and resources invested in products are preserved within the economy for as long as possible.

For instance, the **sharing economy** (e.g., car-sharing platforms, rental services for tools and electronics) enables access over ownership, reducing demand for new production. Similarly, industries such as the electronics sector are adopting **take-back schemes** and **remanufacturing programs**, whereby used devices are collected, restored, and reintroduced to the market.

Material recovery also plays a pivotal role. Metals, plastics, and textiles that might otherwise be discarded can be recycled into raw materials for new products, reducing dependence on virgin resources. Advances in **closed-loop recycling technologies** are further strengthening the feasibility of this principle.

3.3 Recycling, the pillar of global sustainability strategies

Recycling has emerged as a cornerstone of global sustainability strategies, enabling the recovery of materials and the reduction of environmental degradation. However, despite its potential, recycling rates remain critically low, particularly for plastics, with only a fraction of total production reintroduced into the production cycle. This article explores the current state of recycling, highlights technological innovations in waste management and treatment, and examines policy and behavioral incentives that support a transition to a circular economy. It argues that the integration of technological progress, effective policy frameworks, and citizen participation is essential to scaling recycling practices and achieving environmental sustainability.

The 21st century has been characterized by unprecedented material consumption and waste generation. Among these, plastics represent one of the most pervasive and problematic waste streams. Since mass production began in the 1950s, approximately 9.1 billion tonnes of plastic have been produced, yet only about 10% has been recycled, while the remainder has accumulated in landfills or leaked into natural ecosystems (OECD, 2021). This crisis underscores the urgent need to rethink traditional linear production models and adopt circular economy principles, where waste is not an endpoint but a resource.

Regeneration can occur through practices such as composting organic waste, which returns valuable nutrients to the soil, or through regenerative agriculture, which prioritizes soil health, biodiversity, and carbon sequestration. In forestry and fisheries, sustainable management practices ensure that natural resources can replenish rather than decline.

Moreover, renewable energy systems—such as wind, solar, and bioenergy-support this principle by reducing reliance on fossil fuels and mitigating greenhouse gas emissions. By aligning industrial systems with ecological cycles, the circular economy transforms production and consumption from extractive to restorative processes.

Together, these principles form the foundation of the circular economy: preventing waste and pollution at the design stage, extending the lifespan of products and materials, and regenerating ecosystems. When applied collectively, they offer a transformative framework for building resilient economies that operate within planetary boundaries, ensuring long-term sustainability for both society and the environment.

Recycling plays a pivotal role in this transition, transforming discarded materials into valuable inputs for new production. Nonetheless, recycling requires systemic innovation across multiple dimensions: effective waste classification, advanced treatment and social or economic incentives that drive processes. participation.

8.4 The Importance of Recycling

The environmental consequences of inadequate recycling are profound. More than 140 million tonnes of plastic are currently polluting rivers, oceans, and lakes worldwide (OECD, 2021). Moreover, global plastic production continues to rise, reaching 461 million tonnes in 2021, with recycling rates stagnating at around 6%. These figures reveal a paradox: despite increased awareness of recycling environmental issues, systems have not scaled proportionately to production.

Recycling offers several benefits:

- 1. Resource conservation reducing dependence on virgin raw materials.
- 2. Energy savings particularly when compared with primary production processes.
- 3. Environmental **protection** - mitigating pollution and greenhouse gas emissions.
- 4. Economic potential creating markets for secondary materials and generating employment opportunities.

To unlock these benefits, however, innovation and systemic change are indispensable.

8.5 Waste Classification and Treatment **Technologies**

Accurate classification is the foundation of effective recycling. Contaminated or improperly sorted waste diminishes the quality of secondary materials and increases processing costs. Advances in automation are addressing these challenges. For instance, waste treatment plants now employ infrared spectroscopy to identify and separate different types of plastics.

Digitization further enhances classification by enabling waste traceability. Data-driven systems can track materials from collection to processing, ensuring compliance with quality standards. On the household level, mobile applications are being developed to guide citizens in separating materials correctly, integrating digital literacy into sustainable behavior.

Innovations in treatment methods are expanding the scope of recyclable materials. A promising example is the use of microwaveassisted depolymerization, which breaks down polystyrene into monomers that can be reconstituted into new plastics without quality loss. Unlike traditional heat-based methods, this process relies on electricity, thereby reducing energy consumption and greenhouse gas emissions.

Applications extend beyond plastics; in the tire industry, microwave recycling systems are being piloted to recover valuable components from end-of-life products. Such innovations exemplify the potential of technology to close material loops in diverse industrial sectors.

8.6 Incentivization and Behavioral Change

Even the most advanced technologies cannot succeed without widespread participation. Recycling begins with individual action, yet global impact requires systemic incentives. Emerging models leverage digital tools to reward sustainable behavior. Incorporating QR codes and mobile connectivity into recycling bins, citizens can be recognized for correctly disposing of waste, which can be exchanged for sustainable rewards or donations to social causes. This model aligns personal benefit with collective environmental responsibility, fostering both participation and community engagement.

The future of recycling lies at the intersection of technology, governance, and behavior. Technological innovations enhance efficiency and material recovery, while governance frameworks such as extended producer responsibility and international agreements on plastic pollution—establish accountability across the value chain. Simultaneously, incentives and awareness campaigns foster a culture of responsible consumption.

However, significant challenges remain. Recycling rates remain disproportionately low relative to production, infrastructure varies widely across regions, and consumer behavior is inconsistent. Bridging these gaps requires coordinated action:

- Research and development to expand scalable recycling technologies.
- Policy innovation to incentivize producers and consumers.
- Educational initiatives to normalize sustainable practices.

Recycling is no longer a peripheral activity but a critical component of global sustainability. The integration of advanced classification technologies, innovative treatment methods, and behavioral incentives demonstrates the transformative potential of recycling within a circular economy framework. Yet, achieving large-scale impact requires systemic change that unites technology, policy, and public engagement.

Ultimately, the future of recycling will be determined by our capacity to reimagine waste as a resource and to embed circularity at the heart of economic and social systems. The tools are emerging; what remains essential is the collective will to employ them effectively in the service of planetary sustainability.

References

- OECD (2021). Global Plastics Outlook. Organisation for Economic Co-operation and Development.
- World Economic Forum (2021). Innovations to Fight Plastic Pollution. Retrieved from: https://www.weforum.org/agenda/2021/12/fight-plastic-pollution-innovations

8.7 Global Initiatives and Policy Frameworks

Ambitious policy frameworks and international initiatives are driving the global movement toward circularity.

- The European Green Deal: As the EU's flagship strategy for climate neutrality by 2050, the Green Deal places the Circular Economy at its core. By encouraging resource efficiency, innovation, and sustainable practices, it seeks to establish Europe as a global leader in the transition toward sustainability.
- United Nations Sustainable Development Goals (SDGs): Circular practices directly support SDG 12 (Responsible Consumption and Production), while also contributing to SDG 13 (Climate Action) and SDGs 14 and 15 (Life Below Water and Life on Land). The Circular Economy thus provides a practical means of operationalising the SDGs within local and global contexts.
- International Developments: Beyond Europe, countries such as China have enacted legislation, such as the Circular Economy Promotion Law, to embed circular principles within national development strategies. These efforts highlight the growing recognition that circularity is not optional but a strategic necessity for sustainable economic growth.

Taken together, these initiatives illustrate a global consensus: the Circular Economy is indispensable for addressing the ecological crises of our time while creating resilient economies and healthier societies. For educators, engaging with these frameworks allows students to connect local learning with global challenges, fostering a sense of shared responsibility and global citizenship.

8.8 Suggested Classroom Activities

Activity 1: "Green School Solid Waste Management Diagnosis"

Main theme and focus

The activity seeks to help students understand, assess, and improve solid waste management at their school. To achieve this, students will carry out a Green School Diagnosis, focusing on the theme of solid waste (GreenWaste). The process is intended to promote awareness, strengthen knowledge, and foster responsible attitudes and behaviours related to waste generation, separation, and recycling. A Green School Diagnosis is an educational and participatory tool that analyses the environmental management of a school by examining specific processes such as:

- Water use (GreenWater)
- Energy use (GreenEnergy)
- Green spaces (GreenSpace)
- Solid waste (GreenWaste)

By systematically addressing these dimensions, schools can develop a more comprehensive environmental management strategy. The present activity focuses on **solid waste**, while preparing the ground for possible future diagnoses of water, energy, or green spaces.

1. Preparatory Phase

- Ensure that the school has (or creates) recycling bins for the separation of solid waste. If necessary, students can build simple containers from cardboard or other available materials, labelling them with the appropriate colours and categories.
 - Example of colour codes (these vary by country):
 - Green: Glass
 - Blue: Paper and cardboard
 - Yellow: Plastic bottles and cans
 - Orange: Organic waste
 - Red: Hazardous waste
 - Grey: Other waste

 Hold a coordination meeting with teachers and administrative staff to review the current state of waste management in the school. Check whether there are existing initiatives or campaigns on waste reduction and recycling.

Conduct a waste audit over 1–2 weeks to measure the type and amount of waste generated (organic vs. inorganic, by weight).

- Identify local recycling collection centres near the school, noting what materials they accept and under what conditions.
- Prepare classroom sessions to explain the waste separation process to all students, ensuring they know which materials go into each container and why.

2. Organisational Phase

- Invite volunteer teachers and students to form a GreenWaste Working Group.
- Discuss the purpose of the diagnosis and agree on methods to survey the entire school community (students, teachers, staff).

Emphasise the importance of broad participation to ensure the validity of the diagnosis.

3. Survey Design Phase

 Together with the working group, design a short, age-appropriate survey to evaluate knowledge, attitudes, and practices around waste management.

Possible survey questions include:

- Do you know why solid waste management is important? (Yes/No/A little – Explain)
- What kind of waste should be placed in the green/blue/red/grey bins?
- Why is it important to place the right kind of waste in the right containers?
- What do you do when you need to dispose of rubbish in the classroom?
- Do you try to find a bin in the playground? (Yes/No/Sometimes)
- Are there separate waste bins in the school toilets? (Yes/No)
- Do you find litter in or around the school? (Yes/No)
- Does the school recycle some of its waste? (Yes/No)
- Do you think it should? (Yes/No)
- If yes, please share your ideas on how this should be done.
- Once the survey is ready, prepare an initial action plan based on expected results, focusing on knowledge improvement and practical changes.

4. Implementation and Data Collection Phase

- Distribute the survey to all students during class.
- Collect responses and compile the results.
- Organise a meeting with teachers and student volunteers to process the data, highlight main trends, and identify key concerns or suggestions.
- Draft the first version of the GreenWaste Management Diagnosis for the school.

5. Conclusions and Proposals Phase

- Present survey results and initial conclusions at an extended school meeting with students, teachers, staff, and parents (if possible).
- Use this space to listen to additional opinions and refine the action plan.
- Conclusions should be grouped into two categories:
 - Knowledge and awareness:
 What students and staff know
 (or don't know) about waste
 separation and management.

Practical suggestions: Actions proposed by the school community.

- Develop a final action plan for improvement, with specific measures such as:
 - o Campaigns on correct bin use.
 - School competitions on waste reduction.
 - Partnerships with local recycling centres.
 - Monitoring progress every semester.

Evaluation Criteria

To assess the success of the activity, schools can use the following criteria:

- 1. **Knowledge**: Level of understanding about solid waste categories and proper management.
- 2. **Participation**: Involvement of students, teachers, and staff in the survey and meetings.
- 3. **Outputs**: Waste audit results, survey findings, action plan proposals.

Follow-up: Implementation of agreed-upon actions and continuity of monitoring.

Expected Outcomes

- Increased awareness of waste management across the school community.
- Improved waste separation practices.
- Strengthened collaboration between students, teachers, and staff.
- A concrete and participatory GreenWaste Action Plan for the school.

9. Understanding the Sustainable Development Goals (SDGs)

The Sustainable Development Goals (SDGs) constitute a universal framework for addressing the most urgent global challenges and for advancing a sustainable future for all. Endorsed by all United Nations Member States in 2015, the SDGs encompass 17 interdependent goals that collectively address economic, social, and environmental priorities.

Grounded in the principle of leaving no one behind, the SDGs provide a shared blueprint for peace, prosperity, and sustainability, highlighting the importance of collective action and global partnerships.

This section highlights how educators can embed the SDGs into lesson design, underlining their relevance in addressing global challenges. Practical strategies will be discussed to make the SDGs engaging and meaningful, encouraging students to take an active role in shaping a sustainable future. As a universal call to action, the United Nations' SDGs provide a blueprint for tackling pressing global issues. We will explore how the Circular Economy complements and advances key SDGs, thereby promoting a holistic and integrated approach to sustainable development.

9.1 Origins and Significance

The SDGs build upon the Millennium Development Goals (MDGs), which guided global development efforts from 2000 to 2015. While the MDGs achieved progress in areas such as poverty reduction, education, and health, they were limited in scope and insufficient in systemic and structural drivers of inequality tackling environmental degradation. The SDGs emerged in response to these shortcomings, offering a more comprehensive, integrated, and ambitious agenda designed to confront the root causes of global challenges and to foster transformative change.

9.2 The 17 Goals

The SDGs span a broad range of issues, reflecting the complexity of global development. They address not only fundamental human needs but also the systems and structures necessary to sustain them.

Each goal is interconnected, underscoring the recognition that progress in one area often depends upon, and contributes to, progress in others.

1	No Poverty	End poverty in all its forms everywhere
2	Zero Hunger	End hunger, achieve food security and improved nutrition, and promote sustainable agriculture.
3	Good Health and Well-being	Ensure healthy lives and promote well-being for all at all ages.
4	Quality Education	Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all.
5	Gender Equality	Achieve gender equality and empower all women and girls.
6	Clean Water and Sanitation	Ensure availability and sustainable management of water and sanitation for all.
7	Affordable and Clean Energy	Ensure access to affordable, reliable, sustainable, and modern energy for all.
8	Decent Work and Economic Growth:	Promote sustained, inclusive, and sustainable economic growth, full and productive employment, and decent work for all.
9	Industry, Innovation, and Infrastructure	Build resilient infrastructure, promote inclusive and sustainable industrialization, and foster innovation.

10	Reduced Inequality	Reduce inequality within and among countries.
11	Sustainable Cities and Communities	Make cities and human settlements inclusive, safe, resilient, and sustainable.
12	Responsible Consumption and Production	Ensure sustainable consumption and production patterns.
13	Climate Action	Take urgent action to combat climate change and its impacts.
14	Life Below Water	Conserve and sustainably use the oceans, seas, and marine resources for sustainable development.
15	Life on Land	Protect, restore, and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, halt and reverse land degradation, and stop biodiversity loss.
16	Peace, Justice, and Strong Institutions	Promote peaceful and inclusive societies for sustainable development, provide access to justice for all, and build effective, accountable, and inclusive institutions at all levels.
17	Partnerships for the Goals	Strengthen the means of implementation and revitalize the Global Partnership for Sustainable Development.

9.3 Interconnectedness and Integration, Global Targets and Indicators

The SDGs span a broad range of issues, reflecting the complexity of global development. They address not only fundamental human needs but also the systems and structures necessary to sustain

A defining feature of the SDGs is their interdependence. Addressing one challenge inevitably involves advancing others. For example, eradicating poverty (Goal 1) is inseparable from ensuring quality education (Goal 4), promoting health and well-being (Goal 3), and fostering gender equality (Goal 5). This integrated perspective encourages holistic and systems-based solutions rather than isolated interventions.

Each SDG is accompanied by specific targets and measurable indicators, providing a structured framework for monitoring progress. These benchmarks enable governments, organizations, and other stakeholders to set priorities, allocate resources, and track outcomes. Regular reporting fosters accountability, facilitates learning, and allows recalibration of strategies to ensure alignment with long-term objectives.

Central to the SDGs is the principle of inclusivity. Achieving sustainable development requires the engagement of diverse actors, including governments, civil society, academia, businesses, and individuals. This collaborative ethos recognizes that complex global challenges demand shared responsibility and cooperative action across sectors and borders.

9.4 Challenges and Opportunities

While the SDGs offer an ambitious and transformative vision, their realization faces considerable challenges. These include uneven progress across regions, financial constraints, political instability, and the disruptive impacts of global crises such as the COVID-19 pandemic. At the same time, the SDGs present opportunities for innovation, new partnerships, and the scaling of solutions that can drive sustainable transformation.

The private sector is a pivotal actor in advancing the SDGs. By aligning strategies with sustainable practices, businesses can contribute to poverty alleviation, promote inclusive economic growth, and safeguard the environment. Companies adopting strengthen their only responsible business models not competitiveness but also contribute to achieving the global agenda. The SDGs represent a collective global commitment to building a sustainable, equitable, and prosperous future. While notable progress has been achieved, continued momentum requires sustained effort, strong partnerships, and innovative solutions. The SDGs serve as a compass, guiding societies toward a world where prosperity is shared, ecosystems are protected, and future generations are empowered.

9.5 Integrating the SDGs in Education

Step 1: Understanding the SDGs

The educational journey begins with an introduction to the 17 SDGs. Students explore their origins, significance, and interconnectedness, establishing a foundation for understanding sustainable development as a multidimensional and global challenge.

Step 2: The Classroom as a Global Stage

Classrooms become spaces for exploring real-world issues through the lens of the SDGs. Collaborative projects and critical discussions encourage students to connect abstract concepts to tangible challenges and solutions within their local and global communities.

Step 3: Curricular Integration

The SDGs can be embedded across disciplines. From mathematics to literature, science to social studies, educators integrate SDGrelated themes into existing curricula, ensuring that learning is relevant, contextual, and inspiring.

Step 4: Hands-On Learning and Experiences

Experiential learning is central to SDG education. Through fieldwork, community initiatives, and problem-solving projects, students engage actively in applying concepts to real-world contexts. Such activities—whether environmental campaigns, social projects, or innovation challenges—demonstrate the practical impact of sustainable action.

Step 5: Digital Tools and Resources

Technology enhances accessibility and engagement in SDG learning. Interactive applications, virtual field trips, and online platforms provide diverse opportunities for exploration, making the SDGs relatable and adaptable to different learning styles.

Step 6: Assessing Impact and Progress

Assessment in SDG education extends beyond academic performance to include evaluation of personal and collective contributions toward sustainability. Portfolios, reflective journals, and group evaluations encourage students to measure both learning outcomes and societal impact.

Step 7: Fostering Global Citizenship

The ultimate objective of SDG education is to cultivate informed, empathetic, and responsible global citizens. By fostering intercultural understanding, ethical responsibility, and civic engagement, education equips students not only with knowledge but also with the values and agency to contribute to a more just and sustainable world.

Integrating the SDGs into education is more than an academic exercise; it is a transformative pathway that empowers learners to actively shape the future. Students emerge with not only intellectual competence but also the capacity to lead meaningful change,

ensuring that the principles of sustainability and inclusivity extend far beyond the classroom.

9.6 Suggested Classroom Activities

Case Studies On Sdg 4s: "Ensure inclusive and equitable quality education and promote lifelong learning for all"

development

UN Department of Global Communications (DGC): https://www.un.org/sustainabledevelop ment UN Department of Economic and Social Affairs (DESA): https://sdgs.un.org/goals UN Development Programme (UNDP): https://www.undp.org/sustainable

1 Explore the UN websites below and specifically look at the targets for SDG

Activity

G D BwE 2 Have these targets been achieved in your school or community? If not, do you think that they can be achieved? 3 Think about countries where the targets of SDG 4 have not been met.

goals?gclid=EAIaIQobChMItOW56 SHgQMVwg6zAB3nKwyLEAAYAiAAEgJa

4 What can the global community do to help these countries improve access to inclusive and equitable quality education?

5 How does SDG 4 relate to some of the other SDGs?

6 Have a discussion about these questions or other relevant related topics.

Warming School

Biodiversity refers to the vast variety of life on Earth, encompassing all living organisms such as plants, animals, fungi, bacteria, and humans. According to National Geographic, biodiversity can be understood at multiple levels—from genetic diversity within a species, to the richness of species in an ecosystem, to the diversity of ecosystems themselves.

The World Wide Fund for Nature (WWF) defines biodiversity as the interdependent web of organisms that work together in ecosystems to maintain balance and support life. Biodiversity ensures the provision of food, clean water, fertile soil, medicine, and shelter—all fundamental for human survival.

Yet biodiversity is more than a resource. It has intrinsic value: every living organism has the right to exist and flourish, regardless of its usefulness to humanity. It also provides cultural, spiritual, and educational inspiration, strengthening our connection to nature.

10.1 The Importance of Biodiversity

Biodiversity sustains life on Earth through ecosystem services, including:

- Pollination and seed dispersal vital for agriculture and natural vegetation.
- Climate regulation forests and oceans act as carbon sinks.
- Water purification wetlands and watersheds filter pollutants.
- Nutrient cycling microorganisms sustain soil fertility.
- Pest and disease control balanced ecosystems limit outbreaks.

In addition, biodiversity supports global economies through agriculture, forestry, fisheries, and tourism. Many life-saving medicines, such as artemisinin (antimalarial), Taxol (anti-cancer), and digoxin (cardiac treatment), are derived from plants or animals. The loss of species reduces the chances of discovering new cures for diseases.

Finally, contact with biodiverse environments is associated with better mental and physical health, demonstrating that biodiversity is essential not only ecologically and economically, but also socially and emotionally.

10.2 Threats to Biodiversity

placing unprecedented Human activities are pressure on biodiversity. Key drivers of biodiversity loss include:

- · Habitat destruction through deforestation, urbanisation, and agriculture.
- Overexploitation of natural resources, including overfishing and illegal hunting.

- Invasive species that outcompete native species and alter ecosystems.
- Climate change, which shifts habitats and exacerbates existing pressures.
- Pollution, which affects soil, air, and water quality, leading to loss of species.

According to WWF's Living Planet Report (2022), global populations of mammals, birds, fish, reptiles, and amphibians have declined by an average of 69% since 1970. Moreover, the 2019 Global Assessment Report estimated that 1 million species are currently at risk of extinction, a crisis unprecedented in human history.

10.3 Pollution and Its Impact on Biodiversity

Among all threats, pollution is one of the most insidious because it permeates every ecosystem:

- Air pollution affects forests, soils, and freshwater systems through acid rain and atmospheric toxins.
- · Water pollution from agricultural runoff, industrial waste, and plastics threatens marine life and freshwater species.
- Soil contamination with heavy metals and chemicals reduces fertility and endangers microorganisms critical for nutrient cycling.
- Light and noise pollution disturb nocturnal animals, migratory birds, and marine mammals.

For example, microplastics are now found in virtually every marine ecosystem, ingested by species from plankton to whales, with cascading effects on food chains. Pesticides such as neonicotinoids contribute to the decline of pollinators like bees, threatening global food security.

Educators should highlight these risks to students, linking pollution directly to the loss of biodiversity and encouraging behavioural change toward sustainability. Conservation strategies focus on protecting habitats, maintaining genetic diversity, and promoting sustainable use of resources. Key initiatives include:

- Protected areas national parks, nature reserves, and marine sanctuaries.
- Biological corridors connecting fragmented habitats to allow species migration.
- Sustainable agriculture and forestry reducing land degradation and pesticide use.
- International frameworks such as the Convention on Biological Diversity (CBD), which has been ratified by 196 nations, and its Cartagena Protocol on Biosafety.

Education and community participation are essential. Students can be involved in school campaigns, citizen science projects, and partnerships with local environmental organisations to foster a culture of stewardship.

10.4 Key Concepts

Biodiversity is the foundation of life on Earth. It sustains ecosystems, economies, cultures, and human well-being. Yet it is under severe threat due to human activities, particularly pollution, habitat destruction, and overexploitation.

- Ecosystem: a community of organisms interacting with each other and with their physical environment.
- Cultural Diversity: human knowledge, traditions, and practices that shape interactions with nature.
- Bio-cultural Diversity: the interconnection between cultural and biological diversity.

- **Ecosystem Services**: the benefits humans obtain from ecosystems, such as food, water, climate regulation.
- Protected Natural Areas: legally designated spaces to safeguard biodiversity.
- **Biological Corridors**: areas designed to reduce habitat fragmentation and facilitate species movement.

10.5 Suggested Classroom Activities

Incorporating hands-on activities, field trips, and interactive learning experiences can make environmental education about biodiversity more engaging and impactful. Encourage students to explore local ecosystems, identify different species, and understand their ecological roles to foster a deeper connection with nature and inspire conservation actions. Some suggested activities include:

- **Biodiversity Walks** exploring local parks or school gardens to identify plant and animal species.
- Ecosystem in a Box creating miniature ecosystems in terrariums or aquariums to observe interdependence.
- **Species Case Studies** researching endangered species and their ecological role.
- Food Web Mapping constructing diagrams that show how organisms are interconnected.
- Pollinator Gardens designing school gardens to attract bees, butterflies, and other pollinators.

Such activities encourage observation, critical thinking, and responsibility toward the environment.

Activity Numerb 1: "Field Trip to a Reserve or Area of Natural and Cultural Interest2

This activity consists of a guided and participatory tour of a natural area of ecological and cultural importance. Possible sites include a conservation area, a forest, or—if such options are unavailable—urban parks with trees,

Objective

plants, and birdlife.
The activity seeks to integrate
environmental education with cultural
learning. In specific contexts (e.g.,
during the Covid-19 pandemic),
students may also engage in
comparative exercises such as
observing forest loss over time using
photographs from previous years and
present-day images. Everyday issues,
including pollination, agricultural
production, and food security, can be
linked to the observations made during
the trip.

Phases of Implementation

1. Preparatory Phase (Teachers' Activity)

• **Site selection:** An interdisciplinary group of teachers selects the most suitable location based on:

- a) proximity;
- b) ecological and cultural features (biodiversity, forest coverage, cultural links);
- c) accessibility for students and guides.

Background research: Once a location is chosen, teachers study its history, ecological research, main species of flora and fauna, environmental challenges, and its relations with nearby communities.

2. Pre-Organisational Phase (Teachers' Activity)

Teachers carry out a preliminary site visit to design the route for students. The route should include:

- a) starting point and entrance;
- b) initial 5-7-minute walk;
- c) designated observation points;
- d) spacious areas for resting and sharing experiences;
- e) paths leading to areas of greatest interest;
- f) return route with opportunities for new observations;
- g) final gathering point for reflection and closure.

3. Preparation of Students and Families

Students and parents must be informed well in advance. Provide a preparation list including:

- A flask of drinking water.
- Comfortable clothing and suitable footwear.
- Sunscreen and a wide-brimmed hat (for sunny conditions).
- Notebook and pencil for notes or drawings.
- Light waterproof clothing (in case of rain).
- Mobile phones for educational purposes (apps for plant identification, photos, videos).

4. Preparation of the Teaching/Guiding Team

- Prepare messages, guiding questions, and activities for each stage of the trip.
- Distribute responsibilities evenly among the teaching team.
- If possible, involve a parent familiar with the site.

Ensure safety by carrying water, firstaid kit, and following Ministry of Education (MINEDUC) field trip guidelines.

Suggested Field Trip Activities

a) At the Entrance

- Message: Organization, respect, sharing, and enjoyment.
- Brief introduction: history of the site, ecological and cultural importance, relationship with local communities.
- Remind students of safety measures and respectful behavior (silence, care for the site).
- Invite a moment of calm reflection and gratitude to nature before starting. End with a collective gesture (group hug or applause).

b) Initial Walk

- Message: Let's connect with our senses and the forest.
- Activities:
 - Stop to listen attentively and identify sounds; record impressions in notebooks.

Approach and touch the bark of a tree; describe sensations; optionally embrace the tree.

c) Observation Stops

• Message: Let's learn about species of flora and fauna.

Guides explain:

- o Main plant and animal species.
- o Ecological interrelations.
- Sustainable vs. unsustainable uses of biodiversity.
- Cultural and ancestral uses of plants.

Students record observations, questions, or sketches in their notebooks.

d) Reflection Spaces

- Message: How have we felt and what have we discovered?
- · Activities:
 - Rest, drink water, and share observations/drawings.

Compare impressions and highlight what most captured students' interest.

e) Return Route

- Message: Let's identify problems and think of solutions.
- Activities:
 - Observe signs of human activity (waste, damage to vegetation, pollution).

Record observations to propose group solutions.

f) Completion and Closing

- Message: Let's celebrate and share the experience.
- Activities:
 - Final group reflection, reading excerpts from notebooks, sharing drawings.
 - Brainstorm a campaign or project to protect the visited site.
 - Conclude with thanks, a group hug, and applause.
 - Schedule a follow-up meeting at school for awareness-raising activities.

Post-Trip Activity: Production of a Wall Newspaper To consolidate learning from the field trip and share insights with the wider school community.

- 1. Define objectives: Raising awareness about the site's biodiversity, cultural diversity, and ecological importance.
- 2. Assign responsibilities: Designate a core team of students and teachers.
- 3. Choose a title and visual design: Typeface, colors, images.

Editorial section: Introduce the theme and highlight the purpose.

- Main sections:Biodiversity
- Cultural diversity
- o Forests
- News section (current events, local connections)
- Optional: cartoons, drawings, jokes, creative contributions.
- 5. Sequence content logically: Ensure thematic flow and variety.
 6. Include a Suggestions section: Invite peers to propose new ideas.
 The wall newspaper may also include calls for action, such as volunteering in reforestation projects, collecting seeds, planting native species, or caring for local green spaces.

Evaluation of the Activities

The **Desirable Scenario** identified during the Interdisciplinary Roundtable serves as the main evaluation benchmark:

"The educational community and the general population come to value biodiversity, cultural diversity, and forests, through direct experiences and shared actions."

Expected Outcomes

- The educational community demonstrates increased appreciation for biodiversity and cultural diversity.
- Activities generate meaningful shared experiences and promote sustainable action.

Suggested Evaluation Criteria

- 1. Level of student participation and engagement.
- 2. Quality of reflections (notes, drawings, discussions).
- 3. Evidence of knowledge transfer (e.g., wall newspaper content).
- 4. Initiatives for follow-up actions (campaigns, reforestation, awareness projects).

Evaluation can be adapted to educational levels and subjects, using specific indicators developed by teachers in line with established pedagogical approaches.

National Geographic Society. (2024, June 21). Biodiversity. Retrieved from
 https://education.nationalgeographic.org/resource/biodiversity/
 Palancock, L. What is biodiversity? Why it's under threat and why it matters. World Wildlife Fund.
 Retrieved from https://www.worldwildlife.org/pagess/what-is-biodiversity
 American Museum of Natural History. What is Biodiversity? Retrieved from

https://www.amnh.org/research/center-for-biodiversity-conservation/what-is-biodiversity
4 U.S. Environmental Protection Agency, (n.d.). Envirolatas Benefit Category: Biodiversity
Conservation. Retrieved from https://www.epa.gov/enviroatlas/enviroatlas-benefit-category-biodiversity-conservation

5 United Nations. (n.d.). Convention on Biological Diversity. Retrieved from https://www.un.org/en/observances/biological-diversity-day/conventio

Warming School

Climate change refers to long-term shifts in temperatures, weather patterns, and climate systems on Earth. While some natural variations in climate have always occurred, the current changes are largely caused by human activity. These changes are happening at a much faster pace than any natural cycle in recorded history.

When did it start?

Climate change as a scientific concern began to be studied seriously in the late 19th century, when scientists like Svante Arrhenius warned that burning coal could increase carbon dioxide levels and warm the planet. However, the modern era of climate change began with the **Industrial Revolution** (18th-19th centuries), when large-scale use of coal, oil, and gas started releasing unprecedented amounts of greenhouse gases into the atmosphere.

Natural climate changes have shaped Earth for millions of years — from ice ages to warm periods. But the current phase of global warming has been accelerating since the mid-20th century,

particularly after 1950, when fossil fuel use and deforestation expanded rapidly.

11.1 The climate movement

By the late 20th century, scientists had gathered strong evidence of human-driven global warming. The first major political responses came with the 1992 Earth Summit in Rio de Janeiro, followed by agreements such as the Kyoto Protocol (1997) and the Paris **Agreement** (2015). At the same time, environmental movements and youth-led campaigns have raised awareness, demanding urgent climate action.

Despite overwhelming scientific consensus, some groups — often supported by fossil fuel industries — have promoted climate change denial. This includes rejecting the evidence of warming, downplaying human responsibility, or opposing policies to cut emissions. These campaigns have delayed action and created public confusion. However, today, most governments, businesses, and citizens recognize climate change as an urgent global challenge.

Climate change is not a distant problem — it is happening now, affecting ecosystems, economies, and communities worldwide. Understanding its causes, history, and consequences is key to finding solutions and inspiring collective action.

11.2 Climate Change in History

Between 1570 and 1700, Europe experienced a period known as the Little Ice Age, when temperatures dropped by about two degrees Celsius — roughly the same amount that scientists predict our planet could warm today...

This unexpected cooling caused harsh winters, rainy summers, spring hailstorms, and widespread crop failures. These conditions led to famine and forced many people to migrate from rural areas to the cities

The period was marked by fear and superstition. Some believed the extreme weather was a form of divine punishment, while others began to seek rational explanations. This shift in thinking laid the groundwork for the **Enlightenment**, as scientists and philosophers observed nature in new ways. Historian Philipp Blom, in his book Nature's Mutiny, argues that climate shifts such as the Little Ice Age influenced human history profoundly — shaping economies, societies, and even art, like the frozen landscapes painted by Dutch artists of the 17th century.

This historical example reminds us that climate has always shaped human society — and that people can adapt, innovate, and transform during times of crisis.

11.3 Causes of Modern Climate Change

Unlike the Little Ice Age, the current climate crisis is not driven by natural causes. Since the Industrial Revolution, human activities have released increasing amounts of greenhouse gases into the atmosphere. Burning fossil fuels, deforestation, and industrial production have intensified the greenhouse effect, raising Earth's average temperature.

According to the IPCC (Intergovernmental Panel on Climate Change), more than 97% of climate scientists agree: climate change today is caused by human activity.

11.4 Development of the Climate Crisis

In the late 20th century, climate change began to attract global attention. At first, many governments and individuals were skeptical. Over time, mounting scientific evidence and visible environmental changes shifted public opinion.

Important international agreements followed:

- Kyoto Protocol (1997): The first international effort to reduce emissions.
- Paris Agreement (2015): A commitment by most nations to limit global warming to below 2°C above pre-industrial levels.

Despite these milestones, progress has been uneven. Political and economic challenges have slowed implementation, while global emissions continue to rise.

11.5 Future and Current Consequences

Climate change is no longer a distant threat — it is a present reality.

- Global Temperatures: According to NASA, 2023 was the hottest year since records began in 1880, with Earth's average surface temperature about 1.36°C higher than pre-industrial levels. Europe is warming at nearly twice the global average.
- Extreme Weather: Heatwaves, droughts, floods, and hurricanes are becoming more frequent and intense. For example, Cyclone Freddy (2023) was the longest-lasting tropical cyclone ever recorded, devastating Malawi and neighboring countries.
- CO₂ Emissions: In 2023, fossil fuel emissions reached 36.8 billion metric tons — a record high.
- Melting Ice and Rising Seas: The West Antarctic's Thwaites Glacier, known as the "Doomsday Glacier," is melting rapidly. If it collapses, sea levels could rise by 60 cm, threatening coastal communities worldwide.

11.6 Future Scenarios

The future depends on the choices we make today:

- If emissions continue to rise, temperatures may increase beyond 2°C, leading to irreversible damage.
- If action is taken quickly, renewable energy, carbon capture, and sustainable practices could slow or even halt the worst effects.

Encouragingly, investments in clean energy reached record levels in 2023, and international treaties such as the Global Oceans Treaty show growing global cooperation. The ozone layer is also recovering thanks to global agreements banning harmful chemicals.

11.7 Action and Adaptation

Humanity has always shown the ability to adapt — and now, adaptation is more important than ever. Tackling climate change requires collective action at every level.

What You Can Do:

- · Make Your Commute Green: Use public transport, cycle, or walk instead of driving.
- Save Energy: Turn off unused devices, switch to energy-efficient bulbs, and reduce household consumption.
- Vote and Participate: Support leaders and policies committed to fighting climate change.
- · Recycle: Reduce waste and reuse materials to cut industrial emissions.
- Educate and Share: Spread awareness about climate change and its solutions.
- Support Renewable Energy: Advocate for solar, wind, and other clean energy solutions.

Fear alone will not solve the climate crisis. While the challenges are serious, focusing on solutions can inspire action. Just as the Little Ice Age spurred social and intellectual transformation, today's crisis can lead to innovation, cooperation, and a more sustainable world.

The decisions we make now will shape the future of humanity and the planet. By acting together, we can build a fairer, cleaner, and more resilient world for generations to come.

11.8 Suggested Classroom Activities

- 1. History Connection: Compare the effects of the Little Ice Age with today's climate crisis. What similarities and differences do vou see?
- 2. Cause and Effect: Create a diagram showing the main human activities that cause greenhouse gas emissions and the chain of consequences they produce.
- 3. Climate Data Investigation: Research how temperatures in your region have changed over the past 50 years. Present your findings in a graph.
- 4. Debate: Split into two groups. One group defends immediate, strong climate action; the other argues for gradual changes. Which side makes the stronger case?
- 5. Personal Action Plan: Write down three changes you could make in your daily life to reduce your carbon footprint.
- 6. Art and Climate: Look at paintings from the Little Ice Age and compare them with modern art that reflects today's climate challenges. How does art reflect human experiences of climate change?
- 7. Future Scenarios: Imagine it is the year 2100. Write a short story about life in a world where climate change was either successfully addressed or ignored.

12. European Green Deal

The European Green Deal (EGD) is European Union's growth strategy to transform Europe the first climate-neutral continent. It is both an environmental and economic plan that integrates sustainability into all areas of policy, from energy and industry agriculture, mobility, and biodiversity. The Deal is not only about reducing emissions but also about modernizing the economy, ensuring social fairness, and creating opportunities for innovation green jobs.

The European Green Deal was officially launched in December 2019 by the European Commission under President Ursula von der Leven. It marked a historic shift in EU policymaking, placing climate action and sustainability at the core of Europe's political and economic agenda.

12.1 Goals and Achievements

The Green Deal sets out an ambitious roadmap with several key doals:

- Climate Neutrality by 2050: Reduce net greenhouse gas emissions to zero, making Europe the first climate-neutral continent.
- Cut Emissions by 55% by 2030: Compared to 1990 levels, a legally binding target adopted under the European Climate Law.
- Promote a Circular Economy: Move away from the "take-makedispose" model to sustainable production and consumption systems.
- Protect and Restore Biodiversity: Halt ecosystem degradation, reforest lands, and restore wetlands and soils.
- Transform Energy and Mobility: Increase renewable energy use, improve energy efficiency, and promote clean and sustainable transport.
- Just Transition: Ensure that no person or region is left behind by supporting workers and communities most affected by the green transition.

Since 2019, the European Green Deal has made significant progress:

- · Adoption of the European Climate Law enshrining climate neutrality by 2050.
- The Fit for 55 Package (2021), a set of legislative proposals to meet the 2030 emissions reduction target.

- Expansion of the EU Emissions Trading System (ETS) to cover new sectors like shipping and road transport.
- Increased investments in renewable energy and sustainable infrastructure through the **NextGenerationEU recovery fund**.
- Development of the **EU Biodiversity Strategy for 2030** and the **Farm to Fork Strategy** for sustainable food systems.

12.2 Future Perspectives

The European Green Deal represents a bold vision for the future: a Europe that thrives economically while living within planetary boundaries. Its success will depend on sustained political will, cooperation among member states, and the active participation of citizens, industries, and educational systems.

Despite these achievements, the Green Deal faces several complications:

- **Economic and Political Resistance:** Some member states and industries worry about the costs of rapid decarbonization.
- Energy Crisis: The war in Ukraine and energy price spikes have tested Europe's reliance on fossil fuels while accelerating efforts toward energy independence.
- Implementation Gaps: Translating ambitious goals into practical, uniform action across 27 member states remains difficult.
- Social Justice Concerns: Ensuring that vulnerable populations and workers are supported during the transition is a continuing challenge.

Looking ahead, the European Green Deal will continue to evolve as both a climate strategy and a driver of innovation. Future priorities include:

 Scaling up renewable energy capacity (particularly wind and solar).

- Strengthening the Just Transition Mechanism to ensure fairness.
- Leading by example globally, encouraging other regions to pursue ambitious climate policies.
- Expanding research and innovation in green technologies, digitalization, and circular economy models.

12.3 The European Green Deal and Society

The Green Deal is not just about governments and industries — it is about shaping the **future of today's students**. Many of its goals will unfold between now and 2050, meaning today's young people will be the citizens, workers, and leaders responsible for making it succeed.

- **New green jobs** will appear in renewable energy, sustainable farming, construction, digital technologies, and more.
- Education systems, including Vocational Education and Training (VET), are being adapted to prepare students with the skills needed for a green economy.
- Students are encouraged to become active citizens, engaging in climate action, local projects, and even influencing policy through youth movements.

12.4 Education and Skills for the Green Transition

The EU has recognized that achieving the Green Deal requires not only technology, but also **knowledge and skills**. This means:

- Updating curricula to include sustainability and climate literacy.
- Promoting STEM skills (science, technology, engineering, mathematics) alongside green entrepreneurship and digital innovation.

- Supporting mobility and exchange programs (like **Erasmus**+) with a focus on sustainable learning experiences.
- Training teachers so they can integrate climate topics into everyday lessons.

12.5 The Social and Justice Dimension

One of the most important aspects of the Green Deal is the "Just Transition." This means that the changes it brings — such as moving away from coal or reducing polluting industries — must not leave anyone behind.

- Workers in polluting industries should be retrained for new, sustainable jobs.
- Rural and poorer regions should receive extra financial support.
- Social inclusion must be guaranteed so that climate policies are fair, not only for the environment but also for people.

For students, this highlights how climate action is also about **solidarity and equality**, not just science and technology.

12.6 The Green Deal and Europe's Role in the World

The Green Deal is also part of Europe's **global leadership**. The EU is one of the largest economies in the world, and by setting ambitious climate goals, it hopes to inspire and pressure other countries to follow.

- The EU negotiates at international climate summits (COP conferences) with the Green Deal as its core agenda.
- Trade policies now include climate conditions: countries exporting to the EU will be expected to meet environmental standards.

 Europe is investing in green technologies that can be shared globally, such as renewable energy systems and sustainable farming practices.

This makes the Green Deal not only a European project, but also a diplomatic tool to fight climate change worldwide

12.7 Suggested Classroom Activities

The European Green Deal is not only about cutting emissions — it is about creating a fairer, healthier, and more sustainable society. Young people are not just the future beneficiaries, but active participants in making it happen.

The Green Deal may feel like something decided by politicians in Brussels, but students have a role too:

- Participate in school and community projects sustainability.
- Choose studies or careers that contribute to the green transition.
- Be critical and informed consumers supporting companies and products that are environmentally responsible.
- · Join youth organizations or climate action movements that amplify young voices in decision-making.

Activity Number 1 Local Green Deal Project

Objective

Help students understand how the European Green Deal can be applied at the local level by designing a "mini Green Deal" for their school or town. This activity connects global sustainability goals with everyday realities.

Preparation

• Teacher Preparation:

- Print or project a summary of the European Green Deal goals (climate neutrality, clean energy, biodiversity, circular economy, just transition).
- Prepare example case studies (e.g., a school that installed solar panels, a city that introduced free public transport, a town with a zerowaste program).
- Divide students into small groups (4–6 members).
- Provide worksheets with categories: Energy, Transport, Food, Waste & Recycling, Nature/Biodiversity.

Student Preparation (optional homework):

 Ask students to observe their school or neighborhood for one day. What environmental challenges or opportunities do they notice (e.g., food waste in cafeteria, cars idling at the gate, lights left on in classrooms)?

Development

Step 1: Brainstorm

Each group chooses **one or two categories** (Energy, Transport, Food, Recycling, Nature). They brainstorm possible solutions using prompts like:

- What problem do we see locally?
- How does it connect to climate change or sustainability?
- What practical action could improve it?

Examples:

- Energy → Solar panels, motionsensor lights, energy-saving campaigns.
- Transport → More bike racks, incentives for carpooling, safe walking paths.
- Food → Meat-free days, compost bins, reduce packaging waste.

- Recycling/Circular Economy → Repair clubs, swap markets, school recycling stations.
- Nature → Planting trees, creating a pollinator-friendly garden, protecting green spaces.

Step 2: Collecting Information

Groups research or estimate basic data to support their ideas:

- How much energy could be saved? (Ask the janitor for electricity bills, or use simple estimates.)
- How much food waste is produced in the cafeteria each week? (Ask staff or conduct a mini survey.)
- How many students bike vs. drive to school? (Quick poll in class.)
- What local initiatives already exist? (Check school board plans, local council website, community groups.)

If time is limited, provide pre-selected resources (short articles, infographics, school statistics).

Step 3: Designing the Proposal

Groups create a Mini Green Deal Poster or Slide that includes:

- 1. The problem they identified.
- 2. Their proposed solution.
- 3. The expected benefits (environmental, social, financial).
- 4. How it connects to the European Green Deal goals.
- 5. Who would be responsible (school, students, local council, etc.).

Encourage creativity: diagrams, slogans, drawings, or digital designs.

3. Presentation

- Each group presents their "Mini Green Deal" proposal in 3-5 minutes.
- Classmates or a small "jury" (teacher, invited staff, or even student council members) can give feedback.

Optional: Vote for the *most realistic*, *most creative*, or *biggest impact* project.

Conclusion and Reflection

Teacher leads a class discussion:

- What did you learn about applying big climate policies to everyday life?
- Which proposals could realistically be implemented at school or in town?

• What obstacles might arise, and how could we overcome them? Summarize by linking back to the European Green Deal: just as EU countries must adapt the big goals to their own realities, students adapted them to their local context. • Submit the best proposals to the school board or local council as a **Optional Extension** real youth contribution. • Organize a school exhibition where the posters are displayed. Students move from abstract understanding of the EU Green Deal to practical, problem-solving **Key Outcome** engagement with their own environment, feeling empowered to act locally.

Activity Number 2: Role-Play: Negotiating the Green Deal

Understand the challenges of reaching **Objective** agreements between countries, industries, and citizens. Divide the class into groups representing different stakeholders: • EU Commission (proposing policies) Coal-producing country • Renewable energy company • Farmers and agricultural unions Environmental NGO Citizens/Youth movement **Activity** Scenario: The EU Commission proposes to cut emissions by 55% by 2030. Each group must present their position: what they support, what worries them, and what compromises they demand. End with a negotiation round to reach a common agreement. Discuss how difficult or easy it was to balance economic, environmental, and **Debrief** social priorities.

Activity Number 3: Debate: Growth vs. Sustainability

Objective	Critically think about economic and environmental trade-offs.
Activity	 Motion: "Economic growth is more important than environmental sustainability." Split class into two teams: one in favor, one against. Allow preparation time (students can use examples like the European Green Deal, the energy crisis, or global trade). Hold a structured debate, with opening statements, rebuttals, and closing arguments.
Debrief	Ask: Can economic growth and sustainability coexist? How does the Green Deal try to balance the two?

Student Resources - United Nations Sustainable Development

FAO elearning Academy

<u>Environmental Education Resources Guide | UNEP - UN Environment Programme</u> Sostenibilidad

CIRCULAR ECONOMY:

- 1. Ellen MacArthur Foundation:
- The foundation offers extensive educational resources aimed at different age groups. Their website includes lesson plans, case studies, and interactive tools designed to teach the principles of the circular economy.
- Website: [Ellen MacArthur Foundation Education]
 (https://www.ellenmacarthurfoundation.org/resources/education-and-learning/overview)

2. Circular Classroom:

- Circular Classroom provides a collection of teaching materials and resources that explore the concept of the circular economy. They offer free access to lesson plans, activities, and guides for educators.
 - Website: [Circular Classroom](https://circularclassroom.com/)
- 3. Learning for a Sustainable Future (LSF):
- LSF offers resources and lesson plans that integrate sustainability concepts, including the circular economy, across different subjects and grade levels.
 - Website: [Learning for a Sustainable Future](https://www.lsf-lst.ca/)
- 4. The Circular Economy Toolkit:
- This toolkit provides a range of resources for businesses and educators, including worksheets, guides, and case studies to understand and implement circular economy principles.
- Website: [Circular Economy Toolkit](http://circulareconomytoolkit.org/)

- 5. Green Education Foundation (GEF):
- GEF offers sustainability-themed educational resources, which include aspects of the circular economy. They provide lesson plans and activities for various educational levels.
- Website: [Green Education Foundation](http://www.greeneducationfoundation.org/)
- 6. WRAP (Waste and Resources Action Programme):
- WRAP provides resources and case studies focusing on waste reduction and sustainable resource management, key components of the circular economy.
- Website: [WRAP](https://www.wrap.org.uk/)
- 7. Project Learning Tree (PLT):
- PLT offers environmental education programs that include aspects of the circular economy. They provide resources and activities designed to integrate these concepts into various subjects.
 - Website: [Project Learning Tree] (https://www.plt.org/)
- 8. UNESCO Education for Sustainable Development:
- UNESCO provides guidelines and resources for education focused on sustainable development, including circular economy principles.
- Website: [UNESCO ESD](https://en.unesco.org/themes/education-sustainable-development)

POLLUTION:

- 1. Environmental Protection Agency (EPA) Student and Teacher Resources:
- The EPA offers a wide range of educational materials on pollution, including lesson plans, activities, and interactive tools designed to help students understand various types of pollution and their effects.
 - Website: [EPA Educational Resources] (https://www.epa.gov/students)

2. National Geographic Education:

- National Geographic provides a wealth of resources, including articles, videos, and lesson plans that cover topics related to pollution and environmental conservation.
- Website: [National Geographic Education] (https://www.nationalgeographic.org/education/)

3. Teach Engineering:

- This platform offers a variety of lesson plans and activities focused on environmental engineering concepts, including pollution and its mitigation.
 - Website: [Teach Engineering](https://www.teachengineering.org/)

4. PBS LearningMedia:

- PBS provides a collection of educational videos and lesson plans on pollution, environmental science, and sustainability topics. These resources are suitable for different grade levels.
 - Website: [PBS LearningMedia](https://www.pbslearningmedia.org/)

5. World Wildlife Fund (WWF) - Wild Classroom:

- WWF offers educational materials that focus on environmental issues, including pollution. Their resources include lesson plans, activities, and video content.
 - Website: [WWF Wild Classroom](https://www.worldwildlife.org/teaching-resources)

6. Science Buddies:

- Science Buddies provides project ideas and lesson plans related to pollution, including air and water pollution experiments and activities.
 - Website: [Science Buddies Pollution Resources] (https://www.sciencebuddies.org/)

7. Ocean Conservancy - Education Materials:

- Ocean Conservancy offers resources specifically focused on ocean pollution, including activities and

lesson plans that explore the impact of plastic and other pollutants on marine life.

- Website: [Ocean Conservancy Education] (https://oceanconservancy.org/trash-free-seas/international-coastal-cleanup/educator-resources/)
- 8. Air Quality in Europe: 2020 Report European Environment Agency (EEA):
- While more of a report than a direct teaching resource, this document provides comprehensive data on air pollution in Europe, which can be used to support educational discussions and research projects.
- Website: [EEA Air Quality Report] (<u>https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report</u>)

WASTE MANAGEMENT

- 1. EPA Waste Management Resources:
- The U.S. Environmental Protection Agency offers educational materials and activities focused on waste reduction, recycling, and sustainable waste management practices.
 - Website: [EPA Waste Management Resources] (https://www.epa.gov/education)
- 2. National Geographic Education:
- National Geographic provides lesson plans, articles, and videos on waste management topics, including recycling and the impact of waste on ecosystems.
 - Website: [National Geographic Education] (https://www.nationalgeographic.org/education/)
- 3. Clean Up Australia School Resources:
- This organization provides resources and activities designed to teach students about the importance of waste management and how they can contribute to cleaner communities.
 - Website: [Clean Up Australia School Resources](https://www.cleanup.org.au/schools)
- 4. Recycle City Environmental Protection Agency (EPA):

- Recycle City is an interactive educational tool that helps students learn about waste management through games and activities.
- Website: [Recycle City](https://www.epa.gov/recyclecity)
- 5. Planet Ark Recycling and Waste Management:
- Planet Ark offers resources for educators, including lesson plans and guides on recycling and waste management practices.
 - Website: [Planet Ark Recycling](https://planetark.org/)
- 6. Keep America Beautiful Educational Resources:
- This organization provides lesson plans and activities focused on litter prevention, recycling, and waste management.
 - Website: [Keep America Beautiful](https://kab.org/education/)
- 7. Waste Management World Educational Articles:
- Waste Management World provides articles and case studies on innovative waste management practices and technologies, which can be useful for classroom discussions and projects.
 - Website: [Waste Management World] (https://waste-management-world.com/)
- 8. TerraCycle Educational Resources:
- TerraCycle offers resources for teachers to educate students about recycling and upcycling, with a focus on reducing waste and promoting sustainable practices.
 - Website: [TerraCycle Education] (https://www.terracycle.com/en-US/pages/school-programs)
- 9. Zero Waste Schools Resources and Programs:
- This initiative provides resources and guidance to help schools implement zero waste programs, including lesson plans and activities that promote sustainable waste management.
 - Website: [Zero Waste Schools](https://www.zerowasteschools.org/)

EFFICIENCY AND SUSTAINABILITY

- 1. Ellen MacArthur Foundation:
- The foundation provides educational resources focused on the circular economy, which includes concepts of resource efficiency. Their materials include lesson plans and case studies that illustrate efficient resource use.
- Website: [Ellen MacArthur Foundation Education] (https://www.ellenmacarthurfoundation.org/our-work/activities/education)
- 2. U.S. Department of Energy Energy Education and Workforce Development:
- This resource offers educational materials on energy efficiency, which is a key component of resource efficiency. It includes lesson plans, activities, and information on energy-efficient technologies.
 - Website: [DOE Energy Education](https://www.energy.gov/eere/education/education-homepage)
- 3. European Environment Agency (EEA) Resource Efficiency:
- The EEA provides reports and data related to resource efficiency in Europe. While more technical, these resources can be used to support research projects and discussions on efficient resource use.
 - Website: [EEA Resource Efficiency] (https://www.eea.europa.eu/themes/economy/resource-efficiency)
- 4. World Wildlife Fund (WWF) Sustainable Resource Use:
- WWF offers educational resources that discuss resource efficiency in the context of sustainable development and conservation. Their materials include lesson plans and activities.
 - Website: [WWF Education] (https://www.worldwildlife.org/teaching-resources)
- 5. Project Learning Tree (PLT):
- PLT provides environmental education resources that cover sustainability and resource efficiency. They offer lesson plans and activities that promote efficient resource use.
 - Website: [Project Learning Tree] (https://www.plt.org/)

- 6. National Geographic Education:
- This platform offers resources on various environmental topics, including resource efficiency and sustainability. Their materials include articles, videos, and lesson plans.
 - Website: [National Geographic Education] (https://www.nationalgeographic.org/education/)
- 7. Green Education Foundation (GEF):
- GEF provides sustainability education resources that include topics on resource efficiency. They offer lesson plans and activities for different educational levels.
 - Website: [Green Education Foundation] (http://www.greeneducationfoundation.org/)
- 8. International Energy Agency (IEA) Energy Efficiency:
- The IEA provides data and resources on energy efficiency, which can be integrated into lessons on resource efficiency and sustainability.
 - Website: [IEA Energy Efficiency] (https://www.iea.org/topics/energy-efficiency)

POLICIES

Official Government Websites:

U.S. Environmental Protection Agency (EPA): The EPA provides comprehensive resources on environmental laws, policies, and regulations.

Website: www.epa.gov

European Environment Agency (EEA): Offers reports and data on European environmental policies and their impacts.

Website: www.eea.europa.eu

United Nations Environment Programme (UNEP):

UNEP provides resources, reports, and policy guidelines on global environmental issues.

Website: www.unep.org

Intergovernmental Panel on Climate Change (IPCC):

The IPCC reports are pivotal for understanding the scientific basis of climate policies. They offer a wealth of information on the impacts of climate change and policy responses.

Website: www.ipcc.ch

Non-Governmental Organizations (NGOs):

World Resources Institute (WRI): Provides detailed analyses and reports on environmental policies.

Website: www.wri.org

Greenpeace: Offers insights into global environmental campaigns and policy advocacy.

Website: www.greenpeace.org

Academic Journals and Research Papers:

Use databases like Google Scholar, JSTOR, or ScienceDirect to find peer-reviewed articles on environmental policy.

Search for keywords like "environmental policy," "sustainability regulations," and "climate change legislation."

Books:

"Collapse: How Societies Choose to Fail or Succeed" by Jared Diamond explores historical examples of how policy decisions impact environmental outcomes.

"The Environmental Case: Translating Values Into Policy" by Judith A. Layzer provides case studies on environmental policy-making.

Educational Platforms:

TED Talks: Search for talks related to environmental policy and sustainability to provide visual and engaging content.

Website: www.ted.com

Coursera and edX: These platforms offer free courses on environmental policy that can serve as supplementary material.

Multimedia Resources:

Documentaries such as "An Inconvenient Truth" and "Before the Flood" highlight the role of policy in combating climate change.

Utilize platforms like YouTube for documentaries and educational videos on environmental policies globally.

Case Studies and Examples:

Research case studies on successful environmental policies, such as the Montreal Protocol, the Clean Air Act, or the Paris Agreement, to provide concrete examples.

Interactive Tools and Simulations:

Use tools like the En-ROADS Climate Solutions Simulator to help students understand the impact of different policy decisions.

Website: www.climateinteractive.org/tools/en-roads

Other Recommended Resources

Green transition: vocational education and training can provide the skills needed for greening European jobs

https://www.cedefop.europa.eu/en/press-releases/green-transition-vocational-education-and-training-can-provide-skills-needed-greening-european-

jobs#:~:text=The%20transition%20to%20green%20%E2%80%93,will%20play%20an%20eminent%20role

Transforming technical and vocational education and training for successful and just transitions: UNESCO strategy 2022-2029

https://www.unesco.org/en/articles/transforming-technical-and-vocational-education-and-training-successful-and-just-transitions-unesco#:~:text=1,for%20inclusive%20and%20peaceful%20societies

Learning for sustainability Europe - Education and Training Monitoring 2024 https://op.europa.eu/webpub/eac/education-and-training-monitor/en/index.html

Strengthening vocational education and training in Somalia <a href="https://www.giz.de/en/projects/rehabilitation-technical-and-vocational-education-and-training-tvet-somalia#:~:text=and%20Training%20,a%20just%20and%20sustainable%20transition

African Union Climate Change and Resilient Development Strategy and Action Plan (2022-2032)

Other Recommended Resources

Greenpeace Schools for Earth project https://www.greenpeace.de/ueber-uns/umweltbildung/schools-earth

Information and resources on sustainability: https://www.nabu.de/umwelt-und-ressourcen/index.html

Germany indicators for sustainable development in VET: https://www.bibb.de/de/100658.php

Learning materials collection for sustainable education in VET: https://www.bne-portal.de/SiteGlobals/Forms/bne/lernmaterialien/suche_formular.html

Examples and best practice of sustainability in the job field in Germany:
https://www.bmftr.bund.de/SharedDocs/Publikationen/DE/3/30964_Nachhaltigkeit_im_Berufsalltag.htm

I

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Project Number: ERASMUS-EDU-2023-CB-VETPROJECT-101129318

